K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2023

Ta có \(y'=-3x^2+6mx\)

Để hàm số đã cho nghịch biến trên \(ℝ\) thì 

\(f\left(x\right)=-3x^2+6mx\le0,\forall x\inℝ\)

Thế thì \(\Delta'=9m^2-\left(-3\right).0\le0\) \(\Leftrightarrow m=0\)

Vậy để hàm số đã cho nghịch biến trên \(ℝ\) thì \(m=0\)

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

19 tháng 4 2016

Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)

với mọi \(x\in\left(0;+\infty\right)\) (*)

Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)

\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow m\le x^2-2x\)với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)

\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)

\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1

Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)

15 tháng 7 2019

Đáp án: D.

Hàm số đồng biến trên tập xác định R khi và chỉ khi

y' = 3 x 2  - 4mx + 12 ≥ 0, ∀ x ⇔ ∆ ' = 4m2 - 36 ≤ 0 ⇔ -3  ≤  m  ≤  3.

22 tháng 8 2018

Đáp án: D.

Hàm số đồng biến trên tập xác định R khi và chỉ khi

y' = 3 x 2  - 4mx + 12 ≥ 0, x Δ' = 4 m 2  - 36 ≤ 0 -3 ≤ m ≤ 3.

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Ta có:

Để hàm \(y=m\sin x-n\cos x-3x\) nghịch biến trên R thì:

\(y'=m\cos x+n\sin x-3\leq 0, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\cos x+n\sin x\leq 3\), \(\forall x\in\mathbb{R}\)

\(\Rightarrow (m\cos x+n\sin x)_{\max}\le 3(*)\)

Ta thấy theo BĐT Bunhiacopxky:

\((m\cos x+n\sin x)^2\leq (m^2+n^2)(\cos ^2x+\sin ^2x)\)

hay \((m\cos x+n\sin x)^2\leq m^2+n^2\)

\(\Rightarrow m\cos x+n\sin x\leq \sqrt{m^2+n^2}\).

Do đó \((m\cos x+n\sin x)_{\max}=\sqrt{m^2+n^2}(**)\)

Từ (*) và (**) suy ra để \(y'\leq 0\) thì \(\sqrt{m^2+n^2}\leq 3\Leftrightarrow m^2+n^2\leq 9\)

Đáp án C.

Chọn B

NV
23 tháng 9 2020

a.

Pt hoành độ giao điểm: \(m-x=\frac{x-1}{x+1}\)

\(\Leftrightarrow\left(m-x\right)\left(x+1\right)=x-1\)

\(\Leftrightarrow x^2-\left(m-2\right)x-m-1=0\left(1\right)\)

Đường thẳng cắt đồ thị khi và chỉ khi (1) có nghiệm

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+4\left(m+1\right)\ge0\)

\(\Leftrightarrow m^2+8\ge0\) (luôn đúng với mọi m)

Đáp án C đúng

b.

\(y'=3x^2-6mx\)

Hàm số có 2 cực trị \(\Leftrightarrow m\ne0\)

Tiến hành chia y cho y' là lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng: \(y=-2m^2x+3m^3\Leftrightarrow2m^2x+y-3m^3=0\)

Đường thẳng đã cho song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m^2=2\\-3m^3\ne3\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Đáp án A đúng