K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2020

\(\Delta=\left(m+1\right)^2-8\ge0\Rightarrow\left[{}\begin{matrix}m\ge-1+2\sqrt{2}\\m\le-1-2\sqrt{2}\end{matrix}\right.\)

Phương trình ko có nghiệm \(x=0\) nên biểu thức đề bài luôn xác định

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2\end{matrix}\right.\)

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=14\)

\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=16\)

\(\Leftrightarrow\left(\frac{x_1^2+x_2^2}{x_1x_2}\right)^2=16\Leftrightarrow\left(\frac{x_1^2+x_2^2}{2}\right)^2=16\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{2}=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(m-1\right)^2=12\Leftrightarrow\left[{}\begin{matrix}m=1+2\sqrt{3}\\m=1-2\sqrt{3}\left(l\right)\end{matrix}\right.\)

23 tháng 4 2020

Chỗ pt ko có nghiệm x = 0 là sao vậy ạ, mong bn giải thích giùm mình vs ạ

11 tháng 4 2020

Tự tìm delta nhé.

Áp dụng Viete: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m+2\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(2m-2\right)^2-2\left(m+2\right)}{m+2}=4\)

\(\Leftrightarrow4m^2-10m-4m-8=0\)

\(\Leftrightarrow4m^2-14m-8=0\)

\(\Leftrightarrow\left(m-4\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=\frac{-1}{2}\end{matrix}\right.\)

NV
14 tháng 5 2020

\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)

\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)

Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định

\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)

\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)

\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)

\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)

\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)

Thay vào B:

\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)

\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)

Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)

\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)

26 tháng 3 2020

Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = a\\ {x_1}{x_2} = - 2 \end{array} \right.\)

Theo đề bài, ta có:

\(\begin{array}{l} x_1^2 + \left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) + x_2^2\\ = {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right)\\ = {a^2} + 2 + 2a\\ = {\left( {a + 1} \right)^2} + 1 \ge 0 \end{array}\)

Vậy GTNN bằng 1 \(\Leftrightarrow a=-1\)

27 tháng 3 2020

Anh Mai Đã sửa

20 tháng 4 2020

Bài giải 

Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)

<=> ( x1 + x2 ) 2 -2x1x2 = 8

<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0

<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

4 tháng 3 2018

có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)

\(\Delta'=m^2-2m+1-m^2+m+5\)

\(\Delta'=-m+6\)

để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)

\(\Leftrightarrow m< 6\)

theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)

theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\)   ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)

\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)

\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)

\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)

\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)

\(\Leftrightarrow-8m^2+14m+4=0\)

\(\Leftrightarrow4m^2-7m-2=0\)  \(\left(2\right)\)

từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)

vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt 

\(m_1=\frac{7-9}{8}=\frac{-1}{4}\)  ( TM ĐK 

\(m_2=\frac{7+9}{8}=2\)                                  \(m< 6\)và \(m^2-m-5\ne0\)

4 tháng 3 2018

Bài này bạn áp dụng vi-ét là ra ngay nha !

Chúc bạn học tốt !