K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Để thỏa mãn BPT thì:

\(\left\{{}\begin{matrix}m-1>0\\\Delta< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

=> \(m>\sqrt{2}\)

18 tháng 3 2019

ơ bạn ơi xét a>0 vớiΔ<0 là thỏa mãn mọi x

còn chỉ lấy x>0 như nào😃😃

31 tháng 5 2019

Ta có \(\Delta=1-4m\left(m-1\right)>0\)

=> \(-4m^2+4m+1>0\)<=> \(\frac{1-\sqrt{2}}{2}< x< \frac{1+\sqrt{2}}{2}\)

Theo Vi-et ta có

\(\hept{\begin{cases}x_1+x_2=\frac{-1}{m}\\x_1x_2=\frac{m-1}{m}\end{cases}}\)

Ta có \(|\frac{1}{x_1}-\frac{1}{x_2}|>1\)x1,x2 khác 0

<=> \(\frac{1}{x_1^2}+\frac{1}{x_2^2}-\frac{2}{x_1x_2}>1\)

<=> \(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x^2_1x_2^2}-\frac{2}{x_1x_2}>1\)

<=>\(\left(x_1+x_2\right)^2-4x_1x_2>x^2_1x_{ }_2^2\)

<=> \(\frac{1}{m^2}-\frac{4\left(m-1\right)}{m}>\left(\frac{m-1}{m}\right)^2\)

<=> \(1-4m\left(m-1\right)>\left(m-1\right)^2\)

<=> \(5m^2-6m< 0\)

<=> \(0< m< \frac{6}{5}\)

Kết hợp ta được 

\(0< m< \frac{6}{5}\)và \(m\ne1\)do \(x_1,x_2\ne0\)

31 tháng 5 2019

ĐK chỗ denta phải là ..<m<... chứ a?

22 tháng 6 2018

chết r đăng nhầm

27 tháng 5 2019

Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)

Theo viet ta có

\(x_1+x_2=2\)

Vì x1 là nghiệm của phương trình

=> \(x_1^2=2x_1-m\)

Khi đó

\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)

 \(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))

NV
29 tháng 2 2020

a/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\\Delta'=m^2-3m\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2+3m>0\end{matrix}\right.\) \(\Rightarrow m>0\)

b/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)

Vậy để BPT có nghiệm thì \(m>-3\)

NV
10 tháng 5 2020

1.

- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)

- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)

2.

Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)

3.

\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)

4.

\(4x^2+4x+1-3x+9>4x^2+10\)

\(\Leftrightarrow x>0\)

5.

\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)

6.

\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)

10 tháng 5 2020

K hiểu c3 cho lắm sao có 23/5 .Giải thích đc k bạn.

28 tháng 5 2019

có ai chơi minecraft bedwar sever 3fmc.com ko chơi thì kb nha tui là Bluebood_VN

28 tháng 5 2019

pt \(x^2-2mx+m^2-2m=0\) có \(\Delta'=\left(-m\right)^2-\left(m^2-2m\right)=2m\)

Để pt có hai nghiệm phân biệt x1, x2 thì \(\Delta'>0\)\(\Leftrightarrow\)\(m>0\)

Ta có : \(\sqrt{x_1}+\sqrt{x_2}=3\)\(\Leftrightarrow\)\(x_1+x_2+2\sqrt{x_1x_2}=9\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-2m\end{cases}}\)

(*) \(\Leftrightarrow\)\(2m+2\sqrt{m^2-2m}=9\)

\(\Leftrightarrow\)\(4\left(m^2-2m\right)=\left(9-2m\right)^2\)

\(\Leftrightarrow\)\(4m^2-8m=81-36m+4m^2\)

\(\Leftrightarrow\)\(28m=81\)

\(\Leftrightarrow\)\(m=\frac{81}{28}\) ( tm ) 

... 

NV
7 tháng 5 2019

Bài 1:

a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Rightarrow-1< m< 2\)

b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Bài 2:

a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+4m-28< 0\)

\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)

Bài 3:

\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)