Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự làm
b, để bpt có nghiệm đúng với mọi x thuộc R <=> \(^{\Delta}\) \(\le\) 0
có nghiệm với mọi giá trị của x khi a = 0 mà m²+1 > 0 nên không có m thỏa đề
\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)
mình đánh nhầm, giúp vs ạ
Bpt \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=\left(m+2\right)^2-\left(m-1\right)\left(2m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\-m^2+4m+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left[{}\begin{matrix}m< 2-\sqrt{10}\\m>\sqrt{2+\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< 2-\sqrt{10}}\)
\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)
\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)
Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)
\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)
Yêu cầu bài toán thỏa mãn khi
\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)
\(\Leftrightarrow m\ge10\)
Vậy \(m\ge10\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\) \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\left(1\right)\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\left(2\right)\end{matrix}\right.\)
\(m=-6\) ko thỏa mãn
TH1: xét (1)
\(\Leftrightarrow\left\{{}\begin{matrix}m+6>0\\9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-6\\5m^2+6m-171>0\end{matrix}\right.\) \(\Rightarrow m>\frac{-3+12\sqrt{6}}{5}\)
TH2: xét (2)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\5m^2+30m-27>0\end{matrix}\right.\) \(\Rightarrow m< \frac{-15-6\sqrt{10}}{5}\)
Lấy hợp 2 nghiệm (xấu quá)