Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)
Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)
Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)
Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)
\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)
\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)
\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)
Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)
\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)
Yêu cầu bài toán thỏa mãn khi
\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)
\(\Leftrightarrow m\ge10\)
Vậy \(m\ge10\)
ĐK: \(-5\le x\le3\)
\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\)
\(\Leftrightarrow a\ge-x^2-2x+15+\sqrt{-x^2-2x+15}-15\left(1\right)\)
Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)
\(\left(1\right)\Leftrightarrow a\ge f\left(t\right)=t^2+t-15\)
Yêu cầu bài toán thỏa mãn khi
\(a\ge maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right)\right\}=f\left(4\right)=5\)
Vậy \(a\ge5\)