K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

(m-1)x+2m<0(1)

đặt f(x)=(m-1)x+2m

để BPT (1) nghiệm đúng ∀x∈[0;2] <=>

\(\left\{{}\begin{matrix}m-1< 0\\f\left(x\right)=0,\left(\forall x< 0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left(m-1\right)x+2m=0,\left(\forall x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\x=\dfrac{2m}{1-m},\forall x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\dfrac{2m}{1-m}< 0\end{matrix}\right.\)

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

5 tháng 7 2021

\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)

Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)

Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)

Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)

\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)

25 tháng 4 2019

+)Xét 2m2-3m+1=0 => m=1 ,m=1/2

Vs m=1

Thay vào bpt => -2x+1=0

=>x=1/2

Vs m=1/2

Thay vào ptr =>1>0 ( lđ)

+) Xét 2m2-3m+1≠0

Ta có : Δ'=(-(2m-1))2-1.(2m2-3m+1)

= 2m2-m

Để bptr luôn đúng thì

\(\left\{{}\begin{matrix}2m^2-3m+1>0\\2m^2-m< 0\end{matrix}\right.\)

Sau đó giải ra , rồi giao các no vào nhé....

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

Để hàm số xác định trên $x\in [0;2]$ thì:
\(\left\{\begin{matrix} x+2m-1\geq 0\\ 4-2m-\frac{x}{2}\geq 0\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-x}{2}\\ m\leq 2-\frac{x}{4}\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-0}{2}\\ m\leq 2-\frac{2}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1}{2}\\ m\leq \frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\in [\frac{1}{2}; \frac{3}{2}]\)

17 tháng 5 2021

Đặt \(f\left(x,m\right)=\left(m^2+1\right)x^2+\left(2m+1\right)x-5\)

\(ycbt\Leftrightarrow\hept{\begin{cases}f\left(-1,m\right)\le0\\f\left(1,m\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-2m-5\le0\\m^2+2m-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}1-\sqrt{6}\le m\le1+\sqrt{6}\\-3\le m\le1\end{cases}}\)

\(\Leftrightarrow1-\sqrt{6}\le m\le1\)

19 tháng 5 2021

Đặt ƒ (x,m)=(m2+1)x2+(2m+1)x−5

ycbt⇔{

ƒ (−1,m)≤0
ƒ (1,m)≤0

⇔{

m2−2m−5≤0
m2+2m−3≤0

⇔{

1−√6≤m≤1+√6
−3≤m≤1

⇔1−√6≤m≤1