Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: d1 cắt d2 tại 1 điểm trên trục tung => \(a\ne a';b=b'\)
<=> \(m\ne3\)và \(5-m=m-1\Leftrightarrow2m=6\Leftrightarrow m=3\)(k t/m dk) => k có m thỏa mãn để d1 cắt d2 tại 1 điểm trên trục tung.
bài 2:ĐK: m khác -1
hoành độ giao điểm A là nghiệm của pt:
\(\left(m+1\right)x^2=3x+1\Leftrightarrow\left(m+1\right)x^2-3x+1=0\)(1)
tại 1 điểm có hoành độ =2 => thay x=2 vào pt (1) ta có: \(4\left(m+1\right)-6+1=0\Leftrightarrow4m+4-6+1=0\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)(t/m đk)
=> 2 đồ thị cắt nhau tại.... bằng 2 <=> m=1/4
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
a: Để hai đường thẳng cắt nhau trên trục tung thì \(\left\{{}\begin{matrix}m^2-2=7\\m-1< >2\end{matrix}\right.\Leftrightarrow m=-3\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=13\\5x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
1. Giả sử hai đường thẳng cắt nhau tại điểm M(x0; y0) trên trục tung
=> x0 = 0 => Thay toạ độ của M vào 2 đường thẳng ta có: (d): y0 = m và (d'): y0 = 3 - 2m
Xét phương trình hoành độ giao điểm: m = 3 - 2m ⇔ 3m = 3 ⇔ m = 1
=> Với m = 1 thì 2 đường thẳng cắt nhau tại điểm trên trục tung
2. Với m = 1 => y0 = 1 => 2 đường thẳng cắt nhau tại điểm M(0; 1)
\(=>m-3=5-m=>m=4\)
\(5\ne3\) (luôn đúng)
Vậy m=4 thì..............
Phương trình hoành độ giao điểm :
\(5x+m-3=3x+5-m\)
\(\Leftrightarrow2x=-2m+8\left(1\right)\)
Cắt nhau tại điểm điểm nằm trên trục tung
=> Điểm có hoành độ là 0
\(\left(1\right):-2m+8=0\)
\(\Leftrightarrow m=4\)