K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 5 2020

\(d_1\) nhận \(\left(2;-3\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-3;-4m\right)\) là 1 vtcp nên nhận \(\left(4m;-3\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.4m+\left(-3\right).\left(-3\right)=0\Rightarrow m=-\frac{9}{8}\)

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)

13 tháng 3 2019

a. Md1= (2;1)

Md2 = (-1;3)

b. Gọi d là đường thẳng đi qua M

- Viết PTTS của d ⊥ d1:

Ta có:

M(2;1)

Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

--> VTCP ud = (3;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)

- Viết PTTQ của d ⊥ d1:

Ta có:

M(2;1)

Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

Vậy PTTQ của d:

-1(x - 2) + 3(y - 1) = 0

<=> -x + 2 + 3y - 3 = 0

<=> -x + 3y - 1 = 0

- Viết PTTS của d ⊥ d2:

Ta có:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

--> VTCP ud = (2;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)

Viết PTTQ của d ⊥ d2:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

Vậy PTTQ của d:

-1(x + 1) + 2(y - 3) = 0

<=> -x - 1 + 2y - 6 = 0

<=> -x + 2y - 7 = 0

NV
4 tháng 6 2020

\(\Delta_1\) có 1 vtcp là \(\left(m^2+1;-m\right)\)

\(\Delta_2\) có 1 vtcp là \(\left(-3;-4m\right)\)

Hai đường thẳng vuông góc khi và chỉ khi tích vô hướng 2 vtcp bằng 0

\(\Leftrightarrow-3\left(m^2+1\right)+4m^2=0\)

\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)

27 tháng 9 2019

giups mình với mình đang cần gấp

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

NV
23 tháng 4 2020

\(\Delta_1\) nhận \(\left(2m-1;m\right)\) là 1 vtpt

\(\Delta_2\) nhận \(\left(-3;-4m\right)\) là 1 vtcp \(\Rightarrow\) nhận \(\left(4m;-3\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2m.4m+m.\left(-3\right)=0\Leftrightarrow8m^2-3m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{3}{8}\end{matrix}\right.\)