Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{6}=\dfrac{y}{3}\)và x-y=12
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{x-y}{6-3}=\dfrac{12}{3}=4\)
\(Vậy\dfrac{x}{6}=4\Rightarrow4.6=24\)
\(\dfrac{y}{3}=4\Rightarrow4.3=12\)
vậy x=24;y=12
Lời giải:
$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$
$\frac{1}{xy}=6$
$\Rightarrow xy=\frac{1}{6}$
$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$
$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$
Vì $y<0$ nên $y=\frac{-1}{3}$
$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$
Mà $\frac{-1}{2}< \frac{-1}{3}$ nên loại (do $x> y$)
Vậy không tồn tại $x,y$ thỏa mãn đề.
Ta có: x/3 = y/4 => 4x = 3y
Mà x + y = 28 => 4(x + y) = 4.28 => 4x + 4y = 112
Do đó 3y + 4y = 112
=> 7y = 112
=> y = 112/7 = 16
=> x = 28 - 16 = 12
b, Tương tự nha bạn
a) Áp dụng t/c dtsbn
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
\(\Rightarrow x=4.3=12\)
\(y=4.4=16\)
C1 dãy tỉ số bằng nhau
\(\frac{x}{y}=\frac{3}{1}\Rightarrow\frac{x}{3}=\frac{y}{1}=\frac{x+y}{3+1}=-\frac{6}{\frac{5}{4}}=-\frac{3}{10}\)
\(\frac{x}{3}=-\frac{3}{10}\Rightarrow x=-\frac{3}{10}.3=-\frac{9}{10}\)
\(\frac{y}{1}=-\frac{3}{10}\Rightarrow y=-\frac{3}{10}.1=-\frac{3}{10}\)
\(x=-\frac{9}{10}\) và \(y=-\frac{3}{10}\)
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
Ta có: x(x+y)+y(x+y)=36+64
=>(x+y)(x+y)=100
=>(x+y)^2=10^2=(-10)^2
Với x+y=10,ta có: x.(x+y)=36=>x.10=36=>x=36:10=3,6
y(x+y)=64=>y.10=64=>y=64:10=6,4
Với x+y=-10,ta có: x(x+y)=36=>x.(-10)=36=>x=36:(-10)=-3,6
y(x+y)=64=>y.(-10)=64=>y=64:(-10)=-6,4
Vậy (x;y) \(\in\){(3,6;6,4);(-3,6;-6,4)}
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{36}{9}=4\)
=>x=12; y=24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/6=(x+y)/(3+6)=36/9=4`
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=4\\\dfrac{y}{6}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot3=12\\y=4\cdot6=24\end{matrix}\right.\)