Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Luỹ thừa các số có tận cùng là chữ số 5 sẽ tận cùng bằng 5
do đó 2.5y sẽ tận cùng bằng 0 => 35x + 9 sẽ tận cùng bằng chữ số 0 => 35 x tận cùng bằng chữ số 1 => x= 0 => 2.5 y = 10 => y=1
Vậy x = 0, y=1
a,S=\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{85}+2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(=126+2^6.\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{84}.\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(=126+2^6.126+...+2^{84}.126\)
\(=126.\left(2^0+2^6+2^{12}+....+2^{84}\right)=21.6.\left(2^0+2^6+....+2^{84}\right)\) chia hết cho 21
b,Xét x=0 thì \(5^y=1+124=125\Rightarrow y=3\)(thỏa mãn)
Xét x\(>0\) thì \(5^y>1+124=125>0\) nên \(5^y\) là số lẻ mà \(2^x\) là số chẵn \(\Rightarrow2^x+124\) là số chẵn(vô lí)
Vậy x=0,y=3 thỏa mãn
a) \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=\left\{-3;3\right\}\end{cases}}\)
b) \(x^2-xy+y=10\)
\(x^2-1-\left(xy-y\right)=9\)
\(\left(x-1\right)\left(x+1\right)-y\left(x-1\right)=9\)
\(\left(x-1\right)\left(x+1-y\right)=9\)
Ta có bảng sau :
x - 1 | 1 | -1 | 3 | -3 | 9 | -9 |
x + 1 - y | 9 | -9 | 3 | -3 | 1 | -1 |
Còn lại cậu tính được x từ dòng 1 thì thay vào dòng 2 rồi tìm y nha .
a, \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)
Vì \(\left(x-2\right)^{2016}\ge0\forall x\) và \(\left|y^2-9\right|\ge0\forall y\Rightarrow\left|y^2-9\right|^{2017}\ge0\)
\(\Rightarrow\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}\Rightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}\)
=> x=2; y=3 hoặc y = -3
Luỹ thừa các số có tận cùng là chữ số 5 sẽ tận cùng bằng 5
do đó 2.5y sẽ tận cùng bằng 0 => 35x + 9 sẽ tận cùng bằng chữ số 0 => 35 x tận cùng bằng chữ số 1 => x= 0 => 2.5 y = 10 => y=1
Vậy x = 0, y=1
Vì 5y có tận cùng là 5 nên 2 . 5y có TC = 0 \(\Rightarrow\) 35x + 9 có TC = 0 \(\Rightarrow\) 35x TC là 1 nên x = 0 \(\Rightarrow\) 2.5y = 350 + 9 = 10 \(\Rightarrow\) y = 1.
\(\rightarrow\) x = 0; y = 1.
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
a) 2x+124=5y(1)
Ta có:
2^x+124 là số chẵn nếu x lớn hơn hoặc bằng 1
2^x+124 là số lẻ nếu x=0,mặt khác: 5^y là 1 số lẻ nên suy ra:
=>x=0
Từ (1) =>1+124=5^y
=>5^y=125
=>5^y=5^3
=>y=3
Kết luận : x=0 và y=3