Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ghjkllkjhjkl;lkjhgjklkjhgglkjhgk;lkjhglkjhgfbnmlkjhgfdfghjkoiuy654wsxcvbnml[p098765rdcvbnklp098765rfvbnm,;ơp09876t5rdcvbnmklo987yt
4j48hnh4y5j4h84y5484hu5j8rm74srky448dj48jd48dtju44tku8m4m48mu48t4m48mhhmm64nbdmi fkcmnhkymkutj65.5kl62.26khv62k62,y62m2du525y5yk55ky65ku5d1tm5151uy51yy51f1u51fyu51u,ỳ,yu51ufy,4141,iyu,4141,yu41ymm441mu41uymu41ymu41m41m4141ymu41mu41mu41mm151mm151mu15ymu1muy41myu41myu41muy41ymu41ymu4ymuym4hyusejkhl;kợpbowighhfjkmeslgrdthflhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhllllllllllllllllkbn zdgoknmz 2nxf41fxnh651hf651fhm651fm651fhm651fhm651hm5166fhm651f51fhm61gjm51jmg51,kc51jc,g51jm51
mx51
jy565';liuytrefghjklkjuytrfghjkl;';lkijuhygyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyytttttttttttttttttttttttttttrewdfghjkl;ưlkjuytreaasdfghjkl;'77]ôpiuytrfghjkl;lkjhgfdszxcvbhnjklkjhgfdscvbnjkl;lkjhgf lkjhgvbnmk,l.;l,kmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn jnjjjjjjjjjjjjj hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 8596859685296850968351525122162983465154545456591346195094846846598455461953561845579463177649163466598288188499
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:: \(12a<12b\le\frac{96}{2}=48\)
=> a<b < 4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:12a<12b\(\le\frac{96}{2}\)=48
=> a<b<4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
câu trả lời là mới hok lp 5 sang năm lên lp 6 :)
Gọi 2 số đó là a và b, ƯCLN(a,b)=d
=>a=da'
b=db'
(a',b')=1
BCNN(a,b)=da'b'
Tổng ƯCLN và BCNN là d+da'b'=d(a'b'+1)=126
126 phân tích ra thừa số nguyên tố là 2.32.7
Do đó d=2 hoặc a'b'+1=2
Nếu d=2 thì a'b'+1=126:2=63
a'b'=62. Giả sử a>b thì a'>b'
TH1: a'=31, b'=2 =>a=31.2=62, b=2.2=4. a-b=58
TH2 a'=62, b'=1 =>a=62.2=124, b=2. a-b=122.
Hiệu nhỏ nhất nếu d=2 là 58
Tiếp theo ta xét
a'b'+1=2
a'b=1
=>a'=b'=1
Khi đó d=126:2=63
Ta có a=63, b=63
a-b=0
Tuy nhiên đề bài yêu cầu tìm hiệu dương mà số 0 ko dương cũng ko âm
Vậy 2 số cần tìm là 62 và 4
Gọi 2 số đó là: a,b (a,b ϵ N)
Tích của 2 số đó là:
a.b = ƯCLN.BCNN
⇒ a.b = 840 . 10
⇒ a.b = 8400
⇒ 120.b = 8400
⇒ b = 8400 : 120 = 70
Gọi \(\left(a;b\right)\) là 2 số cần tìm \(\left(a;b\inℕ\right)\)
Theo đề bài ta có :
\(\left\{{}\begin{matrix}UCLN\left(a;b\right)=10\\BCNN\left(a;b\right)=840\end{matrix}\right.\)
\(\Rightarrow UCLN\left(a;b\right).BCNN\left(a;b\right)=10.840=8400\)
mà \(UCLN\left(a;b\right).BCNN\left(a;b\right)=a.b\)
\(a=120\)
\(\Rightarrow b=\dfrac{8400}{120}=70\)
Vậy số còn lại là 70
Tích của 2 số bất kì chính là tích của bội chung nhỏ nhất và ước chung lớn nhất
Suy ra tích 2 số cần tìm là : 3 . 60 =180
Ư(60) ={1,2.3,4,5,6,10,12,15,20,30,60}
Trong các ước trên ta có đúng 1 cặp 2 số có tổng là 27 là : 12 và 15
Mà 15 .12 = 180
Vậy 2 số cần tìm là 15 và 12
Bài này cũng khó ghê ha !!!
Ta có: BCNN (a,b) . ƯCLN (a,b) = a . b
Mà a . b = 2940 & BCNN (a,b) = 210
=> 210 . ƯCLN (a,b) = 2940
=> ƯCLN (a,b) = 2940 : 210
=> ƯCLN (a,b) = 14
Ta có: a = 14m ; b = 14n (m,n∈Z;m,n≠0)(m,n∈Z;m,n≠0)
=> a . b = 14m . 14n = 2940
=> 14m . 14n = 2940
=> 196 . mn = 2940
=> mn = 2940 : 196 = 15
=> Ta có các trường hợp:
- m = 1; b = 15 => \(\begin{cases}a=14\cdot1=14\\b=14\cdot15=210\end{cases}\)
- m = -1 ; b = -15 =>\(\begin{cases}a=14\cdot\left(-1\right)=-14\\b=14\cdot\left(-15\right)=-210\end{cases}\)
- m = 15; b = 1 =>\(\begin{cases}a=14\cdot15=210\\b=14\cdot1=14\end{cases}\)
- m = -15 ; b = -1 => \(\begin{cases}a=14\cdot\left(-15\right)=-210\\b=14\cdot\left(-1\right)=-14\end{cases}\)
- m = 3 ; b = 5 => \(\begin{cases}a=14\cdot3=42\\b=14\cdot5=70\end{cases}\)
- m = -3 ; b = -5 => \(\begin{cases}a=14\cdot\left(-3\right)=-42\\b=14\cdot\left(-5\right)=-70\end{cases}\)
- m = 5 ; b = 3 => \(\begin{cases}a=14\cdot5=70\\b=14\cdot3=42\end{cases}\)
- m = -5 ; b = -3 => \(\begin{cases}a=14\cdot\left(-5\right)=-70\\b=14\cdot\left(-3\right)=-42\end{cases}\)
Ta có: a . b = BCNN(a;b) . UCLN(a;b)
Mà a . b= 2940 và BCNN(a;b) = 210
=> UCLN(a;b) = 2940 : 210 = 14
=> a = 14m và b = 14n (Với m ; n khác 0)
Thay a = 14m và b = 14n vào đẳng thức a . b = 2940 ta được:
14m . 14n = 2940 => 196 . mn = 2940 => mn = 15
Do m và n là hai số tự nhiên nên mn = 1 . 15 = 3 . 5
+) Với m = 1 và n = 15 thì a = 14 và b = 210
+) Với m = 15 và n = 1 thì a = 210 và b = 14
+) Với m = 3 và n = 5 thì a = 42 và b = 70
+) Với m = 5 và n = 3 thì a = 70 và b = 42
Gọi d = ƯCLN(a; b) (d thuộc N*)
=> a = d.m; b = d.n (m;n)=1
=> BCNN(a; b) = d.m.n = 210 (1)
Lại có: a.b = 2940 hay d.m.d.n = 2940 (2)
Tứ (1) và (2) => d = 2940 : 210 = 14
=> m.n = 210 : 14 = 15
Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=15;n=1\\m=5;n=3\end{array}\right.\)
+ Với m = 15; n = 1 thì a = 15.14 = 210; b = 1.14 = 14
+ Với m = 5; n = 3 thì a = 5.14 = 70; b = 3.14 = 42
Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (210;14) ; (70;42) ; (42; 70) ; (14; 210)
Phân tích ra ta thấy:
BCNN a và b nhân WCLN a và b = a nhân b.
=>Ư CLN a,b=2940:210=14.
Đặt a=14k
b=14p
14.14.k.p=2940
k.p=15.
Lọc các số ra.