Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Vì số đó gấp 12 lần hiệu 2 chữ số của nó và chữ số hàng đơn vị lớn hơn chữ số hàng chục nên ta có
ab=12(b-a)
10a+b=12b-12a
11b=22a
b=2a
cho a=1 => b=2
a=2=> b=4
a=3=> b=6
a=4=>b=8
vậy các số cần tìm là 12;24;36;48
Gọi số cần tìm là ab(b>a)
Ta có: ab=12(b-a)
10a+b=12b-12a
10a+12a=12b-b
22a=11b
2a=b
mà ab là số có 2 chữ số
nên a=1;b=2
a=2;b=4
a=3;b=6
a=4;b=8
Vậy các số cần tìm là: 12;24;36;48
Goị số cần tìm là ab
Ta có ab=13*b
10a+b=13b
=>10a=13b-b
=>10a=12b
=>5a=6b
Mà aEN* và bEN
=>a chỉ có thể là 6 và b là 5
Vậy số cần tìm là 65
Lộn cho sữa lại
Gọi số cần tìm là ab
Ta có ab=13*a
10a+b=13a
=>b=13a-10a
=>b=3a
Mà 0<a<10;0\(\le\)b<10
Ta có bảng giá trị:
a | 1 | 2 | 3 |
b | 3 | 6 | 9 |
số cần tìm | 13 | 26 | 39 |
Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình
Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.
Do đó ta phải xét các phương án
- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.
- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.
- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.
Đáp án: C
Gọi số cần tìm là: abc
Các số có 2 chữ số được tạo thành là; ab; ba; ac; ca; bc; cb
Ta có: abc = ab + ba + ac + ca + bc + cb
a x 100 + b x 10 + c = 22 x a + 22 x b + 22 x c
78 x a = 12 x b + 21 x c
26 x a = 4 x b + 7 x c
4 x b + 7 x c lớn nhất là 4 x 9 + 7 x 9 = 99 nên a chỉ có thể bằng 1;2;
cần tìm số lớn nhất nên thử a = 3 => 4 x b + 7 x c = 52 là số chẵn
nên c phải chẵn => c = 4 và b = 6 thoả mãn
Đáp số: 264
Gọi số cần tìm có dạng: \(\overline{ab}\) \(\left(a,b\in N;a,b>0\right)\)
Thương của số cần tìm với tích hai chữ số của nó có dạng:\(\overline{ab}:\left(ab\right)\).
Theo giả thiết ta có: \(\overline{ab}=2ab+18\).
Tổng bình phương các chữ số của số cần tìm là: \(a^2+b^2+9=\overline{ab}\).
Ta có hệ phương trình: \(\left\{{}\begin{matrix}2ab+18=\overline{ab}\\a^2+b^2+9=\overline{ab}\end{matrix}\right.\)\(\Rightarrow a^2+b^2+9=2ab+18\)\(\Leftrightarrow\left(a-b\right)^2=9\)\(\Leftrightarrow\left|a-b\right|=3\).
Th 1. \(a-b=3\)\(\Leftrightarrow a=b+3\). Khi đó:
\(2ab+18=\overline{ab}\)\(\Leftrightarrow2ab+18=10a+b\)\(\Leftrightarrow2\left(b+3\right)b+18=10\left(b+3\right)+b\)\(\Leftrightarrow2b^2-5b-12=0\)\(\Leftrightarrow\left\{{}\begin{matrix}b=4\left(tm\right)\\b=\dfrac{-3}{2}\left(l\right)\end{matrix}\right.\).
Với \(b=4\) ta có \(a=3+b=3+4=7\). Vậy số đó là 73.
Th2: \(a-b=-3\)\(\Leftrightarrow a=b-3\). Khi đó:
\(2ab+18=10a+b\)\(\Leftrightarrow2\left(b-3\right)b+18=10\left(b-3\right)+b\)
\(\Leftrightarrow2b^2-17b+48=0\) (Vô nghiệm).
Vậy số cần tìm là: 73.
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72