K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/a-1/b=1/a.1/b

Vậy a.b=6

vậy a=2;b=6

=>1/2-1/3=1/2.1/3=1/6

28 tháng 7 2016

\(\text{1/a-1/b=1/a.1/b Vậy a.b=6 vậy a=2;b=6 =>1/2-1/3=1/2.1/3=1/6}\text{1/a-1/b=1/a.1/b Vậy a.b=6 vậy a=2;b=6 =>1/2-1/3=1/2.1/3=1/6}\)

1/a-1/b=1/a.1/b

Vậy a.b=6

vậy a=2;b=6

=>1/2-1/3=1/2.1/3=1/6

25 tháng 6 2018

Qui đồng lên là đc

1/a-1/b=b-a/ab=1/ab

Vậy b-a=1 hay b=a+1 với mọi a,b nguyên(a,b#0)

hok tốt

17 tháng 3 2018

a, Giả sử tồn tại a,b thỏa mãn đề bài

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)

Mà a,b là số nguyên dương => ab > 0

=> Mâu thuẫn

=> Giả sử sai

Vậy không tồn tại a,b thỏa mãn đề

b, https://olm.vn/hoi-dap/question/1231.html

14 tháng 7 2015

1/a-1/b=1/a.1/b

=>b-a/ab=1/ab

=>b-a=1

Vậy có vô số a,b sao cho b-a=1

6 tháng 10 2018

a=2;b=3

28 tháng 10 2016

Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)

\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)

\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)

Nhưng giá trị này làm cho biểu thức không có nghĩa.

 

28 tháng 10 2016

GOOD

17 tháng 10 2017

a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)

\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)

b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)

21 tháng 7 2019

\(\frac{3}{17}+\frac{-5}{13}+\frac{14}{17}+\frac{-18}{35}+\frac{17}{-35}+\frac{-8}{13}\)

\(=\left(\frac{3}{17}+\frac{14}{17}\right)-\left(\frac{5}{13}+\frac{8}{13}\right)-\left(\frac{18}{35}+\frac{17}{35}\right)\)

\(=1-1-1\)

\(=-1\)

21 tháng 7 2019

2. Tìm ba số nguyên dương đôi một khác nhau:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Không mất tính tổng quát: G/s: a>b>c>0

=> \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\)

Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\); a,b,c là số nguyên dương

=> \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}< 1\)

=> a>b>c>1 , với a, b, c là số nguyên dương  (1)

=> \(1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{c}+\frac{1}{c}+\frac{1}{c}=\frac{3}{c}\)

=> \(1< \frac{3}{c}\Rightarrow c< 3\)

Từ (1) => c=2

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}=1\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\)

Do đó: \(\frac{1}{2}=\frac{1}{a}+\frac{1}{b}< \frac{1}{b}+\frac{1}{b}=\frac{2}{b}\)=> b<4 => b=3 

Khi đó ta có:

\(\frac{1}{a}+\frac{1}{2}+\frac{1}{3}=1\Rightarrow\frac{1}{a}=\frac{1}{6}\Rightarrow a=6\)

Vậy (a;b;c)=(6;3;2) và các hoán vị của nó

14 tháng 12 2016

a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

b) \(\text{Để n nguyên thì P phải nguyên} \)

\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)

=> n-1 là ước của 1

=> n-1={-1;1)

=> n={0;2)

14 tháng 12 2016

c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)