Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tuổi của em và chị lần lượt là a,b
Theo đề, ta có: \(\left\{{}\begin{matrix}a-8+b-8=24\\a=\dfrac{3}{5}b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=40\\a-\dfrac{3}{5}b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=15\\b=25\end{matrix}\right.\)
Gọi hai số cần tìm là a và b
Tổng hai số bằng 7 nên ta có pt: a+b=7 <=>a=7-b
Tổng nghịch đảo của chúng bằng 7/12 nên ta có pt:
\(\frac{1}{a}+\frac{1}{b}=\frac{7}{12}\Leftrightarrow\frac{a+b}{ab}=\frac{7}{12}\Leftrightarrow\frac{7}{ab}=\frac{7}{12}\Leftrightarrow ab=12\)(2)
Thay a=7-b vào (2) ta đc: b(7-b)=12
<=>-b2+7b-12=0
<=>b=4 hoặc b=3
Suy ra a=3 hoặc a=4
Vậy 2 số cần tìm là 3 và 4
Gọi số lớn là a, số bé là b(a,b thuộc tập hợp số tự nhiên)
Theo bài ra ta có:
a+b=1012
2a+b=2014
Vậy: (a+b)+(2a+b)=1012+2014
a+b+2a+b=3026
a+2a+2b=3026
a+2(a+b)=3026
a+2.1012=3026
a+2024=3026
a=3026-2024
a=1002
b=1012-1002=10
vậy số lớn là 1002
số bé là 10
Gọi số cần tìm là ab (đk)
Theo đề bài ta có hpt:
\(\hept{\begin{cases}10a+b=a^2+b^2-11\\10a+b=2ab+5\end{cases}}\)\(\Rightarrow2ab+5=a^2+b^2-11\)
\(\Leftrightarrow a^2+b^2-2ab=16\)
\(\Leftrightarrow\left(a-b\right)^2=16\Rightarrow\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
TH1: Nếu a = b+4\(\Rightarrow10\left(b+4\right)+b=2\left(b+4\right)b+5\)
\(\Leftrightarrow3b+35-2b^2=0\)\(\Leftrightarrow\left(7+2b\right)\left(b-5\right)=0\Rightarrow b=5\Rightarrow a=9\)
TH2: Nếu a = -4+b\(\Rightarrow10\left(-4+b\right)+b=2\left(b-4\right)b+5\)
\(\Leftrightarrow-45+19b-2b^2=0\Leftrightarrow\left(b-5\right)\left(-2b+9\right)=0\)\(\Rightarrow b=5\Rightarrow a=1\)
Vậy số cần tìm là 95 và 15
Gọi số lớn là a , số bé là b \(\left(a>b;a,b\in N\right)\)
Tổng 2 số là : a + b = 99
Nếu lấy số lớn chia cho số nhỏ đươc thương là 2 và số dư là 18 : a = 2b + 18 => a - 2b = 18
Giải hệ: \(\hept{\begin{cases}a+b=99\\a-2b=18\end{cases}\Rightarrow\hept{\begin{cases}a=99-b\\99-b-2b=18\end{cases}\Rightarrow}\hept{\begin{cases}a=99-b\\b=27\end{cases}\Rightarrow}\hept{\begin{cases}a=72\\b=27\end{cases}}}\)
Vậy số lớn là 72 , số bé là 27
Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)
Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:
\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\)) \(\Rightarrow a=b+2=7\)
Vậy số cần tìm là 75
Gọi chữ số đơn vị là x (0 < x < 7)
Chữ số hàng chục là x + 2
Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :
10(x + 2) + x = (x + 2)2 + x2 + 1
Giải phương trình trên ta được x = 5 => x + 2 = 7
Số cần tìm là 75
Gọi số thứ nhất là x
\(\Rightarrow\)Số thứ hai là 19-x
Theo đề bài ta có phương trình:
x2+(19-x)2=185
\(\Leftrightarrow x^2+361-38x+x^2=185\)
\(\Leftrightarrow2x^2-38x+361-185=0\)
\(\Leftrightarrow2x^2-38x+176=0\)
\(\Leftrightarrow x^2-19x+88=0\)
\(\Leftrightarrow x^2-11x-8x+88=0\)
\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)
Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8