K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Vì số 6 lũy thừa lên đều có kết quả có chữ số tận cùng là 6 nên ta có: 6^7^8^9 có chữ số tận cùng là 6

20 tháng 3 2016

((7^7)^7)^7=7^343

((7^6)^6)^6=7^216

7^343/7^7^216=7^127

số tận cùng =9

28 tháng 2 2020

Ta có:

Quy luật của dãy số \(7,19,31,...1999\) là mỗi số cách nhau \(12\) đơn vị

Chữ số tận cùng của tích \(7\cdot19\cdot31\cdot...\cdot1999\) cũng là chữ số tận cùng của tích \(7\cdot9\cdot1\cdot...9\)

Áp dụng quy luật của dãy số thì ta cần tìm chữ số tận cùng của tích \(7\cdot9\cdot1\cdot3\cdot5\cdot7\cdot9\cdot1\cdot3\cdot5\cdot7\cdot9\cdot...\cdot9\)

Mà chữ số tận cùng của tích \(7\cdot9\cdot1\cdot3\) là 9 mà 9 nhân cho số lẻ thì có kết quả là số có chữ số tận cùng là 5 (dãy \(5\cdot7\cdot9\cdot1\cdot3\cdot...\cdot9\))

\(\Rightarrow\) Chữ số tận cùng của tích \(7\cdot19\cdot31\cdot...\cdot1999\) là 5

Chữ số tận cùng thứ nhì thì khó quá, mình không tìm ra cách giải nhưng mình tính thủ công bằng máy tính thì khi nhân tới thừa số thứ 10 trở đi thì chữ số tận cùng thứ nhì luôn bằng 7.

\(\Rightarrow\) Hai chữ số tận cùng của tích \(7\cdot19\cdot31\cdot...\cdot1999\) là 75

19 tháng 10 2020

Ta có: \(44\equiv2\left(mod7\right)\Rightarrow44^{2005}\equiv2^{2005}\left(mod7\right)\) (*)

Lại có: \(2^3\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}.2\equiv2\left(mod7\right)\)

            \(\Leftrightarrow2^{2005}\equiv2\left(mod7\right)\)(**)

Từ (*) và (**) suy ra \(44^{2005}\equiv2\left(mod7\right)\)

Vậy \(44^{2005}\)chia 7 dư 2

19 tháng 10 2020

bạn có thể giúp mình trả lời 2 câu b và c đk ko

7^(20k+15)=7^20k.7^8.7^7=01.1.43=43 ( dấu "=" là đồng dư tại ko viết dc 3 gạch )

13 tháng 8 2015

72015 = 72012.73 = (74)503.(....3) = (....1)503.(....3) = (...1).(...3) = (...3)

Vậy 72015 có tận cùng là 3