K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

Ta có D=4x2+2y2+4xy-2x-6y+10

​​\(\Leftrightarrow\left(2x\right)^2+2.2x.y+y^2+y^2+2.y.3+3^2+1\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y+3\right)^3+1\)

Vì \(\left(2x+y\right)^2\)và \(\left(y+3\right)^2\ge0\)nên\(D\ge1với\forall x,y\)

Dấu = xảy ra khi \(x=\frac{3}{2}\)và \(y=-3\)

Vậy D đạt giá trị nhỏ nhất bằng 1 khi\(x=\frac{3}{2}:y=-3\)

chúc bạn học tốt

6 tháng 7 2019

\(D=\left(4x^2+2.2x.y+y^2\right)-\left(2x+y\right)+y^2-5y+10\)

\(=\left(2x+y\right)^2-2.\left(2x+y\right).\frac{1}{2}+\frac{1}{4}+\left(y^2-2.y.\frac{5}{2}+\frac{25}{4}\right)+\frac{7}{2}\)

\(=\left(2x+y-\frac{1}{2}\right)^2+\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)

Đẳng thức xảy ra khi y = 5/2 và \(x=\frac{1}{2}\left(\frac{1}{2}-y\right)=-1\)

vậy..

19 tháng 3 2020

1,

    4x2+2y2+4xy-4x-6y+2019

=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014

=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014

=(2x+y-1)2+(y-2)2+2014>=2014

vì (2x+y-1)2 >=0 với mọi x,y

    (y-2)>=0 với mọi y

dấu "=" xảy ra khi  y-2=0 suy ra y=2

                      và 2x+y-1=0 suy ra x=-1/2

vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2

2,

         ta có x2-6x+10=(x-3)2+1>=1

vì (x-3)2>=0 với mọi x

 => 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)

=> -3/x2-6x+10>=-3

 dấu "="xảy ra khi x-3=0 =>x=3

vậy -3/x2-6x+10 min=-3 <=>x=3

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1

2 tháng 7 2017

ai ,mình tích  lại

2 tháng 7 2017

2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2 
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y) 
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm 
dau = cay ra <=> x=y=z=1/3

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1