K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Đặt \(a=x^2-4x-12\) thay vào N:

\(N=\left(x^2-4x-5\right)\left(x^2-4x-19\right)+49\)

\(=\left(a+7\right)\left(a-7\right)+49\)\(=a^2-49+49\)\(=a^2\)

Ta có: N = \(a^2\ge0\) \(\left(\forall a\right)\)

\(\Rightarrow\)MIN N = 0 \(\Leftrightarrow a^2=0\Leftrightarrow a=0\)

Hay \(x^2-4x-12=0\Leftrightarrow x^2-4x+4-16=0\)\(\Leftrightarrow\left(x-2\right)^2-4^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow x=-2;x=6\)

Vậy Min A = 0 \(\Leftrightarrow x=-2;x=6\)

4 tháng 8 2017

N= \((x^2-4x-5)\left(x^2-4x-19\right)+49\)

Đặt \(a=x^2-4x-12\) thì

\(x^2-4x-5=x^2-4x-12+7\)

=a + 7

\(x^2-4x-19=x^2-4x-12-7=a-7\)\(\Rightarrow N=\left(a+7\right)\left(a-7\right)+49\)

Như vậy đó thôiHạ Nhiên

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

NV
5 tháng 11 2019

\(P=\left(x^2-4x-5\right)\left(x^2-4x-5-14\right)+49\)

Đặt \(x^2-4x-5=a\)

\(P=a\left(a-14\right)+49=a^2-14a+49=\left(a-7\right)^2\ge0\)

\(\Rightarrow P_{min}=0\) khi \(a=7\Rightarrow x^2-4x-5=7\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

25 tháng 9 2016

a, (x-1)(x-3)+11

=x2-3x-x+3+11

=(x-2)2+10

Vì..................................

b,5-4x2+4x

=-(4x2-4x+4)+9

=-(2x-2)2+9

...........................................................

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)