K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Đề bài ko chính xác

Biểu thức này chỉ có GTLN, không có GTNN

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

24 tháng 8 2020

a,\(x^2+4x+7=x^2+4x+4+3=\left(x+2\right)^2+3\ge3\)

Dấu = xảy ra \(< =>x+2=0< =>x=-2\)

Vậy \(A_{min}=3\)khi \(x=-2\)

b,\(4x^2+4x+6=\left(2x\right)^2+4x+1+5=\left(2x+1\right)^2+5\ge5\)

Dấu = xảy ra \(< =>2x+1=0< =>x=-\frac{1}{2}\)

Vậy \(B_{min}=5\)khi \(x=-\frac{1}{2}\)

c,\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy \(C_{min}=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)

d,\(2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu = xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)

Vậy \(D_{min}=-\frac{9}{2}\)khi \(x=\frac{3}{2}\)

 
 
 
24 tháng 8 2020

A=x2+4x+4+3=(x+2)2+3

21 tháng 3 2017

mình cũng kb

1 tháng 8 2015

1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15 
mà ( x - 4 )2  > 0
=> ( x - 4 )2 -15 > 0

Vậy -15 là gt min của biểu thức khi x = 4

2. x- 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
      ( y - 3)2 > 0 
Vậy -11 là gt min của biểu thức khi x=2 và y = 3

Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^

 

 

21 tháng 7 2021

`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`

`=> A_(min)=1 <=>x=-1/2`

`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`

`=(\sqrt2x-\sqrt2/2)^2+1/2`

`=> B_(min)=1/2 <=> x=1/2`

`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`

`=> C_(max)=-6 <=> x=3`

25 tháng 7 2018

\(a,A=9x^2+5-6x=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\)

Vì: \(\left(3x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\)GTNN của A là 4 tại \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

b,\(B=1+x^2-x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\)GTNN của B là 3/4 tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Các phần cn lại lm tg tự nha bn

19 tháng 1 2021

Ta có: \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất

Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\)  khi \(x=\dfrac{3}{4}\)

\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\)  Khi \(x=\dfrac{3}{4}\)

 

21 tháng 1 2021

Ta có: (2x−1)2≥0(2x−1)2≥0

⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất

Mà: 4x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−544x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−54

Dấu "=" xảy ra ⇔x=34⇔x=34

⇒min(4x2−6x+1)=−54.⇒min(4x2−6x+1)=−54.  khi x=34x=34

⇒(2x−1)2=14⇒(2x−1)2=14

⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5  Khi x=34