K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)

(Chú ý  phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta) 

Nếu \(\Delta\ge0\)thì pt có 2 nghiệm 

Nếu \(\Delta< 0\)thì pt vô nghiệm

         Bài làm

Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)

Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)

=>m(x2+x+1)=x2-x+1

=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)

Nếu m=0..............(th này ko phải xét)

Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)

\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)

\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)

\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)

=> có 2 TH 

TH1: m-3\(\le0\)\(3m-1\ge0\)

=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)

TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)

Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)

=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)

Từ đây bạn tách ngược từ dưới lên.

Nếu ko biết thì nhắn tin cho mk ,mk tách cho

tk mk nha

11 tháng 2 2019

tôi đâu có rảnh

15 tháng 11 2019

\(G=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)

\(=1-\frac{2}{x^2+1}\)

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\frac{2}{x^2+1}\le2\)

\(\Rightarrow-\frac{2}{x^2+1}\ge-2\)

\(\Rightarrow1-\frac{2}{x^2+1}\ge-1\)

Vậy \(G_{min}=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)

27 tháng 3 2017

\(\frac{x^2-x-1+2}{x^2-x-1}\)

\(1+\frac{2}{x^2-x-1}\)

để p min thì \(x^2-x-1\)max

xét x <1 thì P âm

xét x>1 thì P dg

tử ko đổi mẫu và tử dg suy ra \(x^2-x-1\)= -1

suy ra \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

anh có thể tự giải tiieps ạ

e học lớp 7 ạ

27 tháng 3 2017

Xét đa thức p ta có

p=1+2/x^2-x-1

Để p đạt gtnn thi x^2-x-1<0

Ta lại có x^2-x-1=(x-1/2)^2-5/6<=-5/6 tương đương x=1/2 thì (x-1/2)^2-5/6=-5/6

Vậymin p=-7/5 khi x=1/2

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3  

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

2 tháng 11 2016

Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)

Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)

Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).

Vậy giá trị lớn nhất là \(\frac{1}{2}\)

Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)

 

30 tháng 12 2016

Như Nam có câu trả lời hay đó !!!

Vừa zễ hiểu, vừa zễ làm !

Thanks