K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)

Coi đây là PT bậc 2 ẩn x thì PT có nghiệm

\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)

Vậy \(A_{max}=4;A_{min}=-1\)

\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

23 tháng 8 2018

bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5

23 tháng 8 2018

lộn câu a nhen

26 tháng 10 2015

Mình mới lớp 6

nên ko giải được bài này

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

25 tháng 5 2019

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

16 tháng 8 2016

a ) \(A=x^2-4x-7\)

     \(A=\left(x^2+2.x.2+2^2\right)-11\)

     \(A=\left(x+2\right)^2-11\)

Ta có : \(\left(x+2\right)^2\ge0\)

  \(\Rightarrow\left(x+2\right)^2-11\ge-11\)

Vậy GTNN của \(A=-11\)

Khi : \(x+2=0\)

         \(x=-2\)

b ) \(B=-x^2+4x-7\)

     \(B=-\left(x^2+2.x.2-2^2\right)-3\)

     \(B=-\left(x-2\right)^2-3\)

Ta có : \(-\left(x-2\right)^2\le0\)

\(\Rightarrow-\left(x-2\right)^2-3\le-3\)

Vậy GTLN của \(B=-3\)

Khi \(x-2=0\)

          \(x=2\)

16 tháng 8 2016

a)

\(A=\left(x^2-4x+4\right)-11\)

\(=\left(x-2\right)^2-11\)

Ta có

\(\left(x-2\right)^2-11\ge-11\)

Dấu " = " xảy ra khi x = 2

Vậy MINA= - 11 khi x=2

b) 

\(B=-\left(x^2-4x+4\right)-3\)

\(B=-\left(x-2\right)^2-3\)

Ta có

\(-\left(x-2\right)^2-3\le-3\) với mọi x

Dấu " = " xảy ra khi = 2

Vậy MAXB= - 3 khi x = 2