K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

a,(25x^2-2x+4/25)+171/25

(5x-2/5)^2+171/25


vi (5x-2/5)^2>=0

suy ra H>=171/25

dau bang say ra khi ma chi khi 5x-2/5=0 suy ra x=2/25

vay gia tr nho nhat cua bieu thuc H=2/25 khi x=2/25

b,2(x^2-6x+9)+13

2(x-3)^2+13

vi2(x-3)^2>=0

suy ra K>=13

dau bang say ra khy va chi khy x-3=0 suy ra x=3

vay gia chi nho nhat bieu thuc K=13 khi x=3

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

20 tháng 6 2018

Đặt \(f\left(x\right)=-x^2-2x-3\)

\(=-x^2-x-x-3\)

\(=-x.\left(x-1\right)-\left(x-1\right)-2\)

\(=-[-\left(x-1\right)^2]-2\le-2< 0\)

\(\Rightarrow\)Đa thức không có nghiệm

20 tháng 6 2018

Đặt \(A=-x^2-2x-3\)

\(\Rightarrow-A=x^2+2x+3\)

\(-A=\left(x^2+2x+1\right)+2\)

\(-A=\left(x+1\right)^2+2\)

\(\Rightarrow A=-\left(x+1\right)^2-2\)

Ta có: \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le2\forall x\)

\(\Rightarrow\) Đa thức vô nghiệm

12 tháng 12 2016

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

12 tháng 12 2016

Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

1 tháng 8 2019

\(A=x^2-12x+7=x^2-12x+36-29\)

\(=\left(x-6\right)^2-29\ge-29\)

Vậy \(A_{min}=-29\Leftrightarrow x=6\)

1 tháng 8 2019

\(C=x-x^2-4=-\left(x^2-x+4\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)