K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

\(A=x^2-2xy+2y^2+2x-10y+2033\\ =x^2-2xy+y^2+y^2+2x-8y-2y+1+16+2016\\ =\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+1+\left(y^2-8y+16\right)+2016\\ =\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\\ =\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-4\right)^2+2016\\ =\left(x-y+1\right)^2+\left(y-4\right)^2+2016\\ Do\text{ }\left(y-4\right)^2\ge0\forall y\\ \left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\\ \Rightarrow A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\forall x;y\\ Dấu\text{ }''=''\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x-4+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\\ Vậy\text{ }A_{\left(Min\right)}=2016\text{ }khi\text{ }\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

28 tháng 11 2017

xem lại đề

23 tháng 1 2017

Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016

=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y

nên A min=2016 khi y=4;x=-5

2 tháng 2 2017

hay thanks

31 tháng 12 2016

A = x2 -2xy + 2y2+ 2x - 10y + 2033

= x2 - 2xy + y2 + y2 + 2x - 2y - 8y + 2033

= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) + 2016

= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 + 2016

= (x - y + 1)2 + ( y - 4)2 + 2016 \(\ge\) 2016

=> Min của A = 2016 khi \(\left\{\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x-3=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy Min của A = 2016 khi x = 3 và y = 4.

28 tháng 12 2016

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

27 tháng 12 2016

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

4 tháng 10 2016

giup mình vói mai minh kt 15' rồi cầu xin đó

5 tháng 10 2016

bn ơi, mk cũng muốn giúp nhung k tài nào tìm ra GTNN có thể sai đề hoặc mk chưa đủ giỏi để giải, nhưng kt 15p mà cho cỡ này thì thi tuyển nhân tài toan hoc à?

Ta có: \(A=x^2-2xy+2y^2+2x-10y+17\)

\(=x^2-2xy+y^2+y^2+2x-2y-8y+1+16\)

\(=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Ta có: \(\left(x-y+1\right)^2\ge0\forall x,y\)

\(\left(y-4\right)^2\ge0\forall y\)

Do đó: \(\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\) là 0 khi x=3 và y=4

28 tháng 9 2018

\(G=x^2+2y^2-2xy+2x-10y\)

\(G=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-17\)

\(G=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Vậy GTNN của G là -17 khi x = 3; y = 4