Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(A=3x^2+5x-1\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)
Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)
Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)
2,3 tương tự
4, \(A=2x^2+7x\)
\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)
\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)
Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)
Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)
5, 6 tương tự
7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5
8, \(A=x^2-4x+y^2-8x+6\)
\(=x^2-4x+4+y^2-8x+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(MIN_A=-14\) khi x = 2 và y = 4
a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x = 1
b) \(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = 2; y = 4
a, A = x2 - 2x + 2
=(x2 -2x + 1) +1
=(x-1)2 + 1 >= 1
Dấu bằng xảy ra <=> (x-1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy...
b, B = x2 - 4x + y2- 8y + 6
B =(x2 - 4x + 4) + (y2- 8y + 16) - 14
B =(x - 2)2 + (y - 4)2 -14 >= -14
Dấu bằng xảy ra + <=> x - 2 = 0
<=> x = 2
+ <=> y - 4 = 0
<=> y = 4
Vậy ...
Bài này dài vc sao làm hết dc.
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
a) Ta có: \(A=x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTNN của đa thức \(A=x^2-6x+11\) là 2 khi x=3
b) Ta có: \(B=x^2-4x+3\)
\(=x^2-4x+4-1\)
\(=\left(x^2-4x+4\right)-1\)
\(=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: GTNN của đa thức \(B=x^2-4x+3\) là -1 khi x=2
c) Ta có: \(C=x^2+5x\)
\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{25}{4}\)
\(=\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\ge\frac{-25}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
Vậy: GTNN của đa thức \(C=x^2+5x\) là \(\frac{-25}{4}\) khi \(x=\frac{-5}{2}\)
d) Ta có: \(D=x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy: GTNN của đa thức \(D=x^2+x+1\) là \(\frac{3}{4}\) khi \(x=\frac{-1}{2}\)
e) Ta có: \(E=4x^2+4x-2\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1-3\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1\right]-3\)
\(=\left(2x+1\right)^2-3\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-3\ge-3\forall x\)
Dấu '='xảy ra khi
\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: GTNN của đa thức \(E=4x^2+4x-2\) là -3 khi \(x=\frac{-1}{2}\)
g) Ta có: \(G=x^2-7x\)
\(=x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{14}-\frac{49}{14}\)
\(=\left(x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{4}\right)-\frac{49}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\)
Ta có: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\ge\frac{-49}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{7}{2}\right)^2=0\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)
Vậy: GTNN của đa thức \(G=x^2-7x\) là \(\frac{-49}{4}\) khi \(x=\frac{7}{2}\)
\(A=x^2-6x+11\)
\(A=x^2-2.x.3+3^2-3^2+11\)
\(A=\left(x^2-6x+3^2\right)-3^2+11\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
=>\(\left(x-3\right)^2\ge0\ge2\forall x\)
Min A = 2 khi \(\left(x-3\right)^2=0\)
=> \(x-3=0hayx=3\)
Vậy Min A = 2 khi x = 3
\(B=x^2-4x+3\)
\(B=x^2-2.x.2+2^2-2^2+3\)
\(B=\left(x^2-4x+2^2\right)-4+3\)
\(B=\left(x-2\right)^2-1\)
=> \(\left(x-2\right)^2-1\ge0\forall x\)
MIn B = -1 khi \(\left(x-2\right)^2=0\)
=>\(\left(x-2\right)=0hayx=2\)
Vậy Min B = -1 khi x= 2
1: \(=\left(x-1\right)\left(3x+7x^2\cdot2\right)=\left(x-1\right)\cdot x\cdot\left(3+14x\right)\)
2: \(=\left(x-y\right)\left(x^2+1\right)\)
3: \(=4x\cdot\left(x-2y\right)-8y\left(x-2y\right)\)
\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)
5: \(=x^2\left(25-\dfrac{1}{81}y^2\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
a: \(A=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{1}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=5/2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu '=' xảy ra khi x=2 và y=4