K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)

Ta có :

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)

Lại có :

\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Tương tự, ta có 

\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\)không là số tự nhiên

k cho mình nha nha nha

22 tháng 3 2018

\(H\left(x\right)=x+3\)

\(\Rightarrow H\left(x\right)=0\Leftrightarrow x+3=0\Rightarrow x=-3\)

\(T\left(x\right)=12-\dfrac{1}{3}x\)

\(\Rightarrow T\left(x\right)=0\Leftrightarrow12-\dfrac{1}{3}x=0\Rightarrow\dfrac{1}{3}x=12\Rightarrow x=36\)

\(B\left(x\right)=x^2-5x+4=\left(x-1\right)\left(x-4\right)\)

\(\Rightarrow B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

\(C\left(x\right)=42x-4x^2=2x\left(21-2x\right)\)

\(\Rightarrow C\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\21-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=10\dfrac{1}{2}\end{matrix}\right.\)

MONG CÂU TRẢ LỜI NÀY GIÚP BN

#chúc_bn_học_tốt

10 tháng 4 2018

1

a, 4x2+4x+2

= 2x2+2x2+2x+2x+2

= 2x2+(2x2+2x)+(2x+2)

= 2x2+ 2x(x+1)+2(x+1)

= 2x2+(2x+2)(x+1)

= 2x2+2(x+1)(x+1)

=2x2+2(x+1)2

Để 2x2+2(x+1)2=0

=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)

=> đa thức 4x2+4x+2 vô nghiệm

10 tháng 4 2018

1

b, y2+6y+10

= y2+3y+3y+9+1

= y(3+y)+3(y+3)+1

= (y+3)(y+3)+1

= (y+3)2+1

Có (y+3)2\(\ge\)0;1>0

=> (y+3)2+1>0

=> y2+6y+10 vô nghiệm

16 tháng 7 2016

Bài 2

 \(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)

\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn: P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2 a) Xác định đa thức P(x) và Q(x) b) Tìm nghiệm của đa thức P(x) và Q(x) c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2 Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
11 tháng 5 2019

Ta có: P(x)+ Q(x)= x^3+ x^2-4x+2(1)

P(x)- Q(x)= x^3-x^2+2x-2(2)

Lấy (1)-(2)

=> P(x)+ Q(x)- P(x)+ Q(x)

= 2Q(x)

=>2Q(x)=(x^3+x^2-4x+2)- (x^3-x^2+2x-2)

=>2Q(x)= 2x^2-6x-2

=> Q(x)= x^2-3x-1

Vậy P(x)=....

14 tháng 5 2017

tìm nghiệm của đa thức sau:

a,\(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)

Xét \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) \(=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3}x^2+\dfrac{3}{5}=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3x}x^2=-\dfrac{3}{5}\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{9}{25}\\\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{9}{25}\\x=-\dfrac{9}{25}\end{matrix}\right.\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy nghiệm của đa thức \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)\(\left\{\dfrac{9}{25};-\dfrac{9}{25};\sqrt{2};-\sqrt{2}\right\}\)

14 tháng 5 2017

bạn ơi còn phần b với c nữa

11 tháng 1 2018

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

11 tháng 1 2018

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2