K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

ĐKXĐ: \(x\ge0;x\ne4.\)

\(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}.\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}.\)

b) Để \(A=\frac{5}{4}\)\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\Leftrightarrow\frac{4\sqrt{x}}{4\left(\sqrt{x}-2\right)}-\frac{5\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-2\right)}=0\)

\(\Leftrightarrow\frac{4\sqrt{x}-5\sqrt{x}+10}{4\left(\sqrt{x}-2\right)}=0\Leftrightarrow-\sqrt{x}+10=0\)

\(\Leftrightarrow\sqrt{x}=10\Leftrightarrow x=100\left(tmđk\right).\)

Vậy để A=5/4 thì x=100

6 tháng 6 2019

Tự tìm ĐK nha

a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(A=\frac{5}{4}\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\)

\(\Leftrightarrow4\sqrt{x}=5\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow4\sqrt{x}=5\sqrt{x}-10\)

\(\Leftrightarrow\sqrt{x}=10\)

\(\Leftrightarrow x=100\)( thỏa mãn )

Vậy...

22 tháng 7 2016

x=1

Mik tính bằng máy tính đó. Mik mới học lớp 8 thôi, chưa giải được. ^^

20 tháng 7 2016

Điều kiện xác định: \(0\le x\le1\)
Nhận ra rằng phương trình có nghiệm \(x=\frac{1}{2}\)khi x = 1-x nên ta sẽ dùng phương pháp đánh giá.
Với mọi a, b ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\).
Suy ra: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2< 2\left(\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2\right)=2\)
Vậy \(\sqrt{x}+\sqrt{1-x}\le\sqrt{2}\left(1\right)\)
Với mọi a, b ta luôn có: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
Thật vậy: \(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\le2\left(a^2+b^2\right).2\left(a^2+b^2\right)=4\left(a^2+b^2\right)^2\)
\(4\left(a^2+b^2\right)^2< 4.2.\left(a^4+b^4\right)=8\left(a^4+b^4\right)\)suy ra: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
áp dụng BĐT trên cho \(\sqrt[4]{x}+\sqrt[4]{1-x}\)ta có:
\(\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)^4\le8\left(\left(\sqrt[4]{x}\right)^4+\left(\sqrt[4]{1-x}\right)^4\right)=8\) 
Suy ra:\(\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt[4]{8}\left(2\right)\)
từ (1), (2) suy ra: \(\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt{2}+\sqrt[4]{8}\)
Dấu "=" xảy ra: \(x=1-x\Leftrightarrow x=\frac{1}{2}\)(thoản mãn).

'

20 tháng 7 2016

bài toán:

  √x+√1−x+4√x+4√1−x=√2+4√8

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

12 tháng 7 2018

a)     \(x-2\sqrt{x}=0\)

\(\Leftrightarrow\)\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy....

b)  \(x\sqrt{x}+x-2=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x+2\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

\(\Leftrightarrow\)\(x=1\)

Vậy....

12 tháng 7 2018

c)  \(x-2\sqrt{x}-15=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}-5\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\)\(\sqrt{x}-5=0\)   (do \(\sqrt{x}+3>0\))

\(\Leftrightarrow\)\(\sqrt{x}=5\)

\(\Leftrightarrow\)\(x=25\)

Vậy...

d)  \(x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow\)\(\sqrt{x}-3=0\)

\(\Leftrightarrow\)\(\sqrt{x}=3\)

\(\Leftrightarrow\)\(x=9\)

Vậy...

9 tháng 6 2021

b, bạn kiểm tra lại đề nhé 

c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)

3 tháng 9 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\) 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\) 

\(\Leftrightarrow x=10\)

3 tháng 9 2019

 ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\Leftrightarrow\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

\(\Rightarrow x=5^2=25\)