\(A=x\left(x+1\right)\left(x^2+x-4\right)\)

Tìm GTLN của: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Ta có : A = x(x + 1)(x2 +  x - 4)

= (x2 + x)(x2 + x - 4)

Đặt x2 + x = t

Khi đó A = t(t - 4)

= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4

 Dấu "=" xảy ra <=> t - 2 = 0

=> t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 + 2x - x - 2 = 0

=> x(x + 2) - (x + 2) = 0

=> (x - 1)(x + 2) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)

4 tháng 9 2020

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A <=> t( t - 4 )

      = t2 - 4t

      = ( t2 - 4t + 4 ) - 4

      = ( t - 2 )2 - 4 

      = ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x2 + x - 2 = 0

                             <=> x2 - x + 2x - 2 = 0

                             <=> x( x - 1 ) + 2( x - 1 ) = 0

                             <=> ( x - 1 )( x + 2 ) = 0

                             <=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

=> MinA = -4 <=> x = 1 hoặc x = -2

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

8 tháng 6 2018

đề dài v~

1.

a) \(f\left(x\right)=5x^2-2x+1\)

\(5f\left(x\right)=25x^2-10x+5\)

\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)

\(5f\left(x\right)=\left(5x-1\right)^2+4\)

Mà  \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow5f\left(x\right)\ge4\)

\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)

Dấu " = " xảy ra khi :

\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy ....

b)  \(P\left(x\right)=3x^2+x+7\)

\(3P\left(x\right)=9x^2+3x+21\)

\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)

\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)

Mà  \(\left(3x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)

\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)

Dấu "=" xảy ra khi :

\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy ...

c)  \(Q\left(x\right)=5x^2-3x-3\)

\(5Q\left(x\right)=25x^2-15x-15\)

\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)

\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(5x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)

\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)

Dấu "=" xảy ra khi :

\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)

Vậy ...

8 tháng 6 2018

2.

a)  \(f\left(x\right)=-3x^2+x-2\)

\(-3f\left(x\right)=9x^2-3x+6\)

\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)

\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)

Mà  \(\left(3x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)

\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)

Dấu "=" xảy ra khi :

\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

b)  \(P\left(x\right)=-x^2-7x+1\)

\(-P\left(x\right)=x^2+7x-1\)

\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)

\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x+\frac{7}{2}\right)^2\ge0\)

\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)

\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)

Vậy ...

c)  \(Q\left(x\right)=-2x^2+x-8\)

\(-2Q\left(x\right)=4x^2-2x+16\)

\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)

\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)

Mà :  \(\left(2x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)

\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)

Dấu "=" xảy ra khi :

\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

Vậy ...

17 tháng 9 2017

ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé

17 tháng 9 2017

hihi, toán NC mà ms lên đây hỏi

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

30 tháng 7 2018

C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính

31 tháng 7 2018

còn câu a) thì sao???????????? @_@