Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự tìm ĐKXĐ nhé
\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)
\(\Rightarrow x=\left\{0\right\}\)
Kết hợp với ĐKXĐ =>...
Ta có: C = \(\frac{x+10}{\sqrt{x}+3}=\frac{x-9+19}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+19}{\sqrt{x}+3}=\sqrt{x}-3+\frac{19}{\sqrt{x}+3}\)
C = \(\sqrt{x}+3+\frac{19}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{19}{\left(\sqrt{x}+3\right)}}-6\)(bđt cosi)
C \(\ge2\sqrt{19}-6\)
Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{19}{\sqrt{x}+3}\) <=> \(\left(\sqrt{x}+3\right)^2=19\)
<=> \(\orbr{\begin{cases}\sqrt{x}+3=\sqrt{19}\\\sqrt{x}+3=-\sqrt{19}\left(vn\right)\end{cases}}\) <=> \(\sqrt{x}=\sqrt{19}-3\) <=> \(x=22-6\sqrt{19}\)
Vậy MinC = \(2\sqrt{19}-6\) <=> \(x=22-6\sqrt{19}\)