Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }A=x^2-10x+25\\ A=x^2-2\cdot x\cdot5+5^2\\ A=\left(x-5\right)^2\\ Do\text{ }\left(x-5\right)^2\ge0\forall x\\ \Leftrightarrow A\ge0\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5\\ \text{Vậy }A_{\left(Min\right)}=0\text{ }khi\text{ }x=5\)
\(\text{b) }B=x^2+y^2-x+6y+10\\ B=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \left(y+3\right)^2\ge0\forall y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\\ \text{Dấu "=" xảy ra khi: }\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\\\left(y+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\\ \text{ Vậy }B_{\left(Min\right)}=\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{1}{2};y=-3\)
\(\text{c) }C=2x^2-6x+10\\ C=\left(2x^2-6x+\dfrac{9}{2}\right)+\dfrac{11}{2}\\ C=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{11}{2}\\ C=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\ge\dfrac{11}{2}\\ \text{Dấu "=" xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{11}{2}khi\text{ }x=\dfrac{3}{2}\)
\(\)
b)
\(B=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\left(10-9-\dfrac{1}{4}\right)\)\(B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
a) P= x2 -2x +1 +4 = (x-1)2 +4
Ta có: (x-1)2>= 0
\(\Rightarrow\) (x-1)2 +4 >= 4
GTNN của P=4 khi x= 1
c) M= (x2-x+1/4)+(y2+6y+9)+3/4 = (x-1/2)2 + (y+3)2 +3/4
Ta có: (x-1/2)2 + (y+3)2 >= 0
\(\Rightarrow\) (x-1/2)2 + (y+3)2 +3/4 >= 3/4
GTNN của Q=3/4 khi x=1/2 ; y=-3
b) Q= 2(x2-3x) = 2(x2-3x+9/4)-9/2 = 2.(x-3/2)2-9/2
ta có 2.(x-3/2)2 >=0
\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2
GTNN của Q=-9/2 khi x=3/2
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
Câu 1.
P = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinP = 4 <=> x = 1
Q = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinQ = -9/2 <=> x = 3/2
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
=> MinM = 3/4 <=> x = 1/2 ; y = -3
Câu 2.
A = 4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxA = 7 <=> x = 2
B = x - x2
= -( x2 - x + 1/4 ) + 1/4
= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/4 <=> x = 1/2
N = 2x - 2x2
= -2( x2 - x + 1/4 ) + 1/2
= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/2 <=> x = 1/2
Làm gần xong thì lỡ bấm out ra TT
\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minP = 4 <=> x = 1
\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
Vậy minQ = - 9/2 <=> x = 3/2
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy minM = 3/4 <=> x = 1/2 và y = - 3
a) Ta có: Q = 2x2 - 6x = 2x2 - 6x + 9/2 - 9/2 = 2(x2 - 3x + 9/4) - 9/2 = 2(x - 3/2)2 - 9/2
Ta luôn có : (x - 3/2)2 \(\ge\)0 \(\forall\)x --> 2(x - 3/2)2 \(\ge\)0 \(\forall\)x
=> 2(x - 3/2)2 - 9/2 \(\ge\)-9/2 \(\forall\)x
hay Q \(\ge\)-9/2 \(\forall\)x
Dấu "=" xảy ra <=> (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2
Vậy Qmin = -9/2 tại x = 3/2
b) Ta có:
M = x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4 = (x - 1/2)2 + (y + 3)2 + 3/4
Ta luôn có: (x - 1/2)2 \(\ge\)0 \(\forall\)x
(y + 3)2 \(\ge\) 0 \(\forall\)y
=> (x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\) 3/4 \(\forall\)x,y
hay M \(\ge\)3/4 \(\forall\)x , y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy Mmin = 3/4 tại x = 1/2 và y = -3
mk giải lun nha :
b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)
nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)
\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)
hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3
VẬY B MIN =3/4 <=>X=1/2,Y=3
MK CHỈ LÀM ĐƯỢC CÂU B THUI
a)Đặt \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)
b) Đặt \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)
Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.
a)\(A=\left(x-5\right)^2\ge0\)
\(\Rightarrow Min=0\)dấu \(=\)xảy ra khi \(x=5\)
a) \(A=x^2-10x+25\)
\(A=\left(x^2-10x+25\right)+0\)
\(A=\left(x-5\right)^2+0\)
Mà \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi : \(x-5=0\Leftrightarrow x=5\)
Vậy ...