Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
\(A=-x^2+2x+3=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2x+1-4\right)\)
\(=-\left[\left(x-1\right)^2-4\right]=-\left(x-1\right)^2+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=-2x^2-4x=-2\left(x^2+2x\right)\)
\(=-2\left(x^2+2x+1-1\right)\)
\(=-2\left[\left(x+1\right)^2-1\right]=-\left(x+1\right)^2+2\le2\)
Vậy \(B_{max}=2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(C=-x^2-6x+12=-\left(x^2+6x-12\right)\)
\(=-\left(x^2+6x+9-21\right)\)
\(=-\left[\left(x+3\right)^2-21\right]=-\left(x+3\right)^2+21\le21\)
Vậy \(C_{max}=21\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(D=-x^2+3x-1==-\left(x^2-3x+1\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(D_{max}=\frac{5}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
1. a)\(x^2+x-3x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
\(x^3-2x+y^3-2y=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)
\(x^2-2xy+y^2-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)
theo mình đề câu c là 6x2
\(x^3+6x^2+9x-xz^2=x\left(x^2-6x+9-z^2\right)\)
\(=\left(x-3-z\right)\left(x-3+z\right)\)
\(x^2-11x+30=x^2-5x-6x+30\)
\(=x\left(x-5\right)-6\left(x-5\right)=\left(x-5\right)\left(x-6\right)\)
\(4x^2-3x-1=4x^2-4x+x-1\)
\(=4x\left(x-1\right)+x-1=\left(4x+1\right)\left(x-1\right)\)
\(9x^2-7x-2=9x^2-9x+2x-2\)
\(=9x\left(x-1\right)+2\left(x-1\right)=\left(9x+2\right)\left(x-1\right)\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-5=\left(x^2+x-1\right)^2-4\)
\(=\left(x^2+x-3\right)\left(x^2+x+1\right)\)
còn lại lát mình làm tiếp
Bài 1:
a, \(x^3-2x-y^3-2y=\left(x^3+y^3\right)-\left(2x+2y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)
b, \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)
c, \(x^3+6x^2+9x-xz^2=x\left(x^2+6x+9-z^2\right)\)
\(=x\left[\left(x+3\right)^2-z^2\right]=x\left(x+3+z\right)\left(x+3-z\right)\)
Mỗi bài mình sẽ làm một câu mẫu ạ
Bài 1:
a) \(x^3-2x+y^3-2y\)
\(=\left(x^3+y^3\right)-\left(2x+2y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)
Bài 2:
a) \(x^2-11x+30\)
\(=x^2-5x-6x+30\)
\(=x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-6\right)\left(x-5\right)\)
Bài 3:
a) \(x^2-5x+4=0\)
\(\Leftrightarrow x^2-4x-x+4=0\)
\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Bài 2:
b: \(=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)
c: \(=9x^2-9x+2x-2=\left(x-1\right)\left(9x+2\right)\)
e: Sửa đề: \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-2\)
\(=\left(x^2+3x\right)^2+3\left(x^2+3x\right)+2-2\)
\(=\left(x^2+3x\right)\left(x^2+3x+3\right)\)
\(=x\left(x+3\right)\left(x^2+3x+3\right)\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)