Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
\(1)\)
\(-3-18\)
\(=-(3+18)\)
\(=-21\)
\(-7\times-5\)
\(=7\times(-1)\times(-5)\)
\(=7\times5\)
\(=35\)
\(5+(-11)\)
\(=5-11\)
\(=-6\)
1,
a) -3 - 18=-21
b) (-7).(-5)=35
c) 5+(-11)=-6
2,
a) -2-13+(-14)-19=-48
b) 221 + 4[(-5).8-4]=45
c) (-2)3.(-2)2+32=0
d) -15.12 - 8.(-12)=-84
3,
a) x:(-2)=9
=>x =9.(-2)
=>x =-18
b)4x+(-8)=24
=>4x =24-(-8)
=>4x =32
=>x =32:4
=>x =8
c) (3x)(x+7)=0
\(\Rightarrow\hept{\begin{cases}3x=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=0:3\\x=0-7\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)
1) 5(x - 2) + 27 = 4x - 8
=> 5x - 10 + 27 = 4x - 8
=> 5x + 17 = 4x - 8
=> 5x - 4x = -8 - 17
=> x = -25
2) 3(x + 1) + 2(x + 2) = -13
=> 3x + 3 + 2x + 4 = -13
=> 5x + 7 = -13
=> 5x = -13 - 7
=> 5x = -20
=> x = -20 : 5
=> x = -4
3) (2x + 4)(5 - x) = 0
=> \(\orbr{\begin{cases}2x+4=0\\5-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=-4\\x=5\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=5\end{cases}}\)
Vậy ...
4) x2 - 3x = 0
=> x(x - 3) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy ...
5) x2 - 3x + 2 = 0
=> x(x - 3) = -2
=> x(x - 3) = 1 . (1 - 3)
=> x = 1
Câu 1 :Giá trị tuyệt đối của [+2016]=2016
Giá trị tuyệt đối của [-2017]=2017
câu 1 a trị tuyệt đối của 2016 là -2016 hoặc 2016
-2017 là 2017
a) 8x+2x = 25.22
8x+2x = 25. 4
8x+2x = 100
( 8 + 2) . x = 100
10 . x =100
x =100 :10
x =10
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
a)\(2^x.4=128\Leftrightarrow2^x=32\Leftrightarrow2^x=2^5\Rightarrow x=5\)
b)\(\left(2x+1\right)=125\Leftrightarrow2x=126\Leftrightarrow x=13\)
c)\(x^{15}=x\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^5\Leftrightarrow\orbr{\begin{cases}x-5=1\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
d,
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
\(A=\left|2x+8\right|+6\ge6\Rightarrow Min_A=6\)
\(B=\left|2y+4\right|+7+\left|4x+3\right|\ge7\Rightarrow Min_B=7\)
\(C=x^2+2x+5=\left(x+1\right)^2+4\ge4\Rightarrow Min_C=4\)
a) Vì |2x+8| lớn hơn hoặc bằng 0 nên GTNN của A=6
b)Vì |2y+4|,|4x+3| lớn hơn hoặc bằng 0 nên GTNN của B=7
c)Ta có: x^2+2x+5=x.(x+2)+5
Nếu x<-2 thì x.(x+2)>0
Nếu x>2 thì x.(x+2)>0
nên GTNN của C=5