Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x4 \(\ge\)0 \(\forall\)x
=> x4 + 5 \(\ge\)5 \(\forall\)x
=> (x4 + 5)2 \(\ge\)25 \(\forall\)x
Dấu "=" xảy ra <=> x = 0
Vậy Min của A = 25 tại x = 0
\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)
Vì \(x^4\ge0\)và \(x^4+10>0\)
\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
\(KL:B_{min}=25\Leftrightarrow x=0\)
\(A=4x^4+4x^2-3\)
\(A=\left[\left(2x^2\right)^2+2.2x^2.1+1^2\right]-4\)
\(A=\left(2x+1\right)^2-4\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-4\ge-4\forall x\)
\(A=-4\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(A_{min}=-4\Leftrightarrow x=-\frac{1}{2}\)
Ta có /x+1/ >/ 0 với mọi x
=> A>/ 5 với mọi x
=>Amax=5
Dấu "=" xảy ra<=>x+1=0<=>x=-1
B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)
ta có x^2+3 >/ 3 với mọi x
=>12/x^2+3 </ 12/3=4 với mọi x
=>B </ 1+4=5 với mọi x
Dấu "=" xảy ra<=>x=0
Vậy...
a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-1 và y=1/3
b: \(\left(2x-1\right)^2+3>=3\)
Do đó: D<=5/3
Dấu '=' xảy ra khi x=1/2
ta có: f(x) = x4 + 2x2 - 2x2 - 6x - x4 + 2x2 - x3 + 8x -x3 - 2
f(x) = (x4 - x4) + (2x2 + 2x2 -2x2) + (8x-6x) - (x3 + x3 ) - 2
f(x) = 2x2 + 2x - 2x3 - 2 = 2x2- 2x3 + 2x - 2
Để f(x) = 0
=> 2x2 - 2x3 + 2x - 2 = 0
2x2.(x-1) + 2.(x-1) = 0
(x-1).(2x2+2) = 0
=> x - 1 = 0 => x = 1
2x2 + 2 = 0 => 2x2 = -2 => x2 = - 1 => không tìm được x
KL:...
để A(x)=B(x)
=>2x^2-5x+1=2x^2-3x-4
=> -5x+1=-3x-4
=> 2x=5
=> x=5/2
a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)
\(\Rightarrow A\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)
b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)
\(\Rightarrow B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
với mọi x thì (2x+1/4)4>=0 (lớn hơn hoặc bằng )
A=(2x+1/4)4-1>=-1
để A đạt GTNN thì (2x+1/4)4=0
2x+1/4=0 =>x=-1/8