Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như đề cho đk x ko phù hợp
Vì ta sẽ biến đổi đc M = (x+1)^2/x+1 - 4
Vậy ko thể đánh giá để tìm đc GTNN của M bởi (x+1)^2 >= 0 nhưng x+1 chưa chắc đã dương , với -1 < x < 0 thì x+1 < 0
Bạn xem lại đề đi nha
- \(A=\frac{x^2+2x+3}{x+1}=\frac{\left(x^2+2x+1\right)+2}{x+1}=\frac{\left(x+1\right)^2+2}{x+1}=\left(x+1\right)+\frac{2}{x+1}\)
Áp dụng bđt Cauchy : \(x+1+\frac{2}{x+1}\ge2.\sqrt{\left(x+1\right).\frac{2}{x+1}}=2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x>-1\\x+1=\frac{2}{x+1}\end{cases}\Leftrightarrow}x=\sqrt{2}-1\)
Vậy Min A = \(2\sqrt{2}\)tại \(x=\sqrt{2}-1\)
- B không tìm được GTNN
Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,
BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho
0
1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)
Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)
\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)
Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1
2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :
\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)
Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)
Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016
GIÚP MÌNH VỚI Ạ!!!
Ta có : \(M=\frac{x^2+2x+5}{x+1}\)
\(\Rightarrow M=\frac{x^2+x+x+5}{x+1}\)
\(\Rightarrow M=\frac{x.\left(x+1\right)+x+5}{x+1}\)