Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)2+lx-1l+2011>(=)0+0+2011=2011
dấu bằng xảy ra khi (x-y)2=0;lx-1l=0
lx-1l=0=>x=1
=>(1-x)2=0
=>y=1
vậy MinM=2011 khi x=y=1
Ta có:
(x-y)2\(\ge\)0
|x-1|\(\ge\)0
2011>0
Suy ra GTNN của M=2011 tại x=1, y=1
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ
Ta có\(\hept{\begin{cases}\left|x-2011\right|\ge2011-x,\forall x\\\left|x-211\right|\ge x-211,\forall x\end{cases}}\)
\(\Rightarrow A\ge1800.\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2011\le0\\x-211\ge0\end{cases}}\)
\(\Rightarrow211\le x\le2011\)
Vậy.............
P=|x-2010|+|2011-x|
P ≧ |x-2010+2011-x|=1
Dấu = xảy ra <=> (x-2010).(2011-x) ≧ 0
Th1 : x-2010 ≧ 0=> x≧ 2010
x-2011 ≦ 0 => x ≤ 2011
=> 2010 ≤ x ≤ 2011
Th2 x-2010 ≤0 => x ≤ 2010
x-2011 ≥ 0=> x ≥ 2011
=> x thuộc rỗng vì 2011 ≤ x ≤ 2010
Vậy Pmin=1 <=> 2010 ≤ x ≤ 2011
Ta thấy x là 1 trong 2 số 2010 hoặc 2011 vì để thoả mãn GTNN.
Vậy khi thế vào thì giá trị nhỏ nhất của biểu thức là 1.
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)
Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)
\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)
\(A\ge6+\left|x-2013\right|\ge6\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\) và \(x=2013\)
\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)
Vậy....
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B=\left|x-2011\right|+\left|x-2\right|\)
\(=\left|x-2011\right|+\left|2-x\right|\)
\(\ge\left|x-2011+2-x\right|=2009\)
Xảy ra khi \(2\le x\le2011\)
\(\left|x-2011\right|+\left|x-2\right|=\left|x-2011\right|+\left|2-x\right|\)
Áp dụng bđt:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow\left|x-2011\right|+\left|2-x\right|\ge\left|x-2011+2-x\right|\)
\(\Rightarrow\left|x-2011\right|+\left|2-x\right|\ge2009\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2011\ge0\Rightarrow x\ge2011\\2-x\ge0\Rightarrow x\le2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2011< 0\Rightarrow x< 2011\\2-x< 0\Rightarrow x>2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow2< x< 2011\)
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
|x-2011|+|x-2| = |x-2|+|2011-x|\(\ge\)|x-2+2011-x|=2009
vậy GTNN của biểu thức: |x-2011|+|x-2| là 2009 \(\Leftrightarrow\)x=2