K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Vì \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Rightarrow\left(2x-1\right)^2+\left|y-2\right|\ge0\forall x,y\)

\(\Rightarrow\left(2x-1\right)^2+\left|y-2\right|+2020\ge2020\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|y-2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)

Vậy GTNN của B bằng 2020 khi x = 1/2,y = 2

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Bài 1:

a. Ta thấy:

$|2x+1|\geq 0$ với mọi $x$

$|x-y+1|\geq 0$ với mọi $x,y$

$\Rightarrow A=|2x+1|+|x-y+1|\geq 0$ với mọi $x,y$

Vậy gtnn của $A$ là $0$. Giá trị này đạt tại $2x+1=x-y+1=0$

$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$

b. Áp dụng BĐT quen thuộc:

$|a|+|b|\geq |a+b|$ ta có:

$B=|x+2|+\frac{1}{2}|2x-1|=|x+2|+|x-\frac{1}{2}|$

$=|x+2|+|\frac{1}{2}-x|$

$\geq |x+2+\frac{1}{2}-x|=\frac{5}{2}$

Vậy gtnn của $B$ là $\frac{5}{2}$. Giá trị này đạt tại $(x+2)(\frac{1}{2}-x)\geq 0$

$\Leftrightarrow -2\leq x\leq \frac{1}{2}$

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Bài 2:

Áp dụng BĐT quen thuộc:

$|a|-|b|\leq |a-b|$

$C=|3x+2|-|2020-3x|=|3x+2|-|3x-2020|$

$\leq |3x+2-(3x-2020)|=2022$

Vậy gtln của $C$ là $2022$

Giá trị này đạt tại $3x-2020\geq 0\Leftrightarrow x\geq \frac{2020}{3}$

 

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

20 tháng 5 2020

\(P=\left(3x-y\right)^2+\left(y-2020\right)^{600}\)

+Có: \(\left(3x-y\right)^2\ge0với\forall x\)

\(\left(y-2020\right)^{600}\ge0với\forall x\)

\(\Rightarrow\left(3x-y\right)^2+\left(y-2020\right)^{600}\ge0\\ \Leftrightarrow P\ge0\)

+Dấu "=" xảy ra khi \(\left(y-2020\right)^{600}=0\Leftrightarrow y=2020\); \(\left(3x-2020\right)^2=0\Leftrightarrow x=\frac{2020}{3}\)

VẬy...

25 tháng 9 2020

C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé

E = | 3x + 1 | + 2| x - y | + 1

\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)

=> MinE = 1 <=> x = y = -1/3

F = 5| x - 1 | + 1/2| 2x + y | + 2020

\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

=> MinF = 2020 <=> x = 1 ; y = -2

25 tháng 9 2020

C = 2| x - 1 | + | 2x + 3 | - 2020

= | 2x - 2 | + | 2x + 3 | - 2020

= | 2x - 2 | + | -( 2x + 3 ) | - 2020

= | 2x - 2 | + | -2x - 3 | - 2020

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 2 )( -2x - 3 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)

=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)

D = | 3 - 2x | + 2| 1 - x | + 1/2

= | 3 - 2x | + | 2 - 2x | + 1/2

= | -( 3 - 2x ) | + | 2 - 2x | + 1/2

= | 2x - 3 | + | 2 - 2x | + 1/2

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 3 )( 2 - 2x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)

17 tháng 11 2019

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

17 tháng 11 2019

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0