K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(A=\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge2\sqrt{\frac{16x}{9x}}+\frac{15}{3}=\frac{23}{3}\)

\(A_{min}=\frac{23}{3}\) khi \(\frac{x}{3}=\frac{16}{3x}\Leftrightarrow x=4\)

NV
22 tháng 2 2020

Nếu ko có thêm điều kiện gì cho x thì biểu thức này ko tồn tại GTNN

15 tháng 3 2015

\(\frac{x^2+15x+16}{3x}=\frac{x^2-8x+16+23x}{3x}=\frac{\left(x-4\right)^2}{3x}+\frac{23}{3}\ge\frac{23}{3}\), với mọi x >0

Dấu = xảy ra <=> x =4

Cách khác :  \(\frac{x^2+15x+16}{3x}=\frac{x}{3}+\frac{15}{3}+\frac{16}{3x}\)

Áp dụng bđt Cauchy với x/3 và 16/3x ta có :\(\frac{x}{3}+\frac{16}{3x}\ge2\sqrt{\frac{x}{3}.\frac{16}{3x}}=\frac{8}{3}\Rightarrow\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge\frac{23}{3}\)

Dấu = xảy ra <=> x/3 = 16/3x <=> 3x2 = 48 <=> x =4

29 tháng 10 2021

Bài 1:

a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Bài 2:

a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)

\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)

 

24 tháng 3 2020

a) thay x = -3 vào biểu thức, ta có: 

\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)

b) M = A.B

\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)

\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)

\(M=-\frac{3.\frac{8}{x+2}}{2}\)

\(M=-\frac{\frac{24}{x+2}}{2}\)

\(M=-\frac{24}{2\left(x+2\right)}\)

\(M=-\frac{12}{x+2}\)

8 tháng 7 2015

Tất cả các bài này đều có chung 1 dạng và hướng làm là gộp hết các biến x2 và x lại cho ra hằng đẳng thức số 1 hoặc số 2. 

Không có ngoại lệ

10 tháng 8 2016

Tất cả hướng phần trên đều chung 1 hướng làm.

30 tháng 11 2016

a. 2x

b.\({3x}\over x^2-1\)

a: =x^2-10x+25+y^2+2y+1

=(x-5)^2+(y+1)^2>=0

Dấu = xảy ra khi x=5 và y=-1

b: x^2-3x-2

=x^2-3x+9/4-17/4

=(x-3/2)^2-17/4>=-17/4

Dấu = xảy ra khi x=3/2

30 tháng 6 2017

Ta có : \(\frac{x^2-3x+3}{x^2-2x+1}=\frac{\left(x^2-2x+1\right)-x+1+1}{\left(x-1\right)^2}\)\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)^2}-\frac{1}{x-1}+1\)

\(=\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.\frac{1}{2}+\frac{1}{4}-\frac{3}{4}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{3}{4}\) khi và chỉ khi x = 3

10 tháng 11 2019

\(A=x^2+2y^2+2xy+2x-4y+2018\)

\(A=\left(x+y\right)^2+2\left(x+y\right)+1+y^2-6y+9+2008\)

\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2008\)

\(\ge2008\)

Dấu "=" xảy ra tại \(y=3;x=-4\)

10 tháng 11 2019

Ủa.Ai t i c k sai e thek ạ.Nếu sai thì nói rõ ra để em còn biết sửa được ko ạ.Im im thế này thì ko hay đâu ạ

12 tháng 3 2016

=23/3 (chắc đúng)