Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
1.
a) \(A=\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(A=\left(x^3-3x^2+3x-1\right)-\left(x^3+64\right)+\left(3x^2-3x\right)\)
\(A=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(A=\left(x^3-x^3\right)+\left(-3x^2+3x\right)+\left(3x-3x\right)+\left(-1-64\right)\)
\(A=-65\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
b) \(B=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(B=\left[\left(x+y-1\right)-\left(x+y+1\right)\right].\left[\left(x+y-1\right)^2+\left(x+y-1\right).\left(x+y+1\right)+\left(x+y+1\right)^2\right]+6\left(x+y\right)^2\)
\(B=\left(x+y-1-x-y-1\right).\left[\left(x+y\right)^2-2\left(x+y\right).1+1+\left(x+y\right)^2-1+\left(x+y\right)^2+2\left(x+y\right).1+1\right]+6\left(x+y\right)^2\)
\(B=-2.\left(x^2+2xy+y^2-2x-2y+1+x^2+2xy+y^2-1+x^2+2xy+y^2+2x+2y+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2\right)-2+6\left(x+y\right)^2\)
\(B=-6\left(x+y\right)^2+6\left(x+y\right)^2-2\)
\(B=-6\left[\left(x+y\right)^2-\left(x+y\right)^2\right]-2\)
\(B=-2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. \(A=x^2+6x+11\)
\(A=x^2+2x.3+3^2+2\)
\(A=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+2\ge2\)
\(\Rightarrow Min_A=2\Leftrightarrow x=-3\)
\(B=4-x^2-x\)
\(B=-x^2-x+4\)
\(B=-x^2-x-\dfrac{1}{4}+\dfrac{17}{4}\)
\(B=-\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{17}{4}\)
\(B=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\)
Ta có: \(-\left(x+\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)
\(\Rightarrow Max_B=\dfrac{17}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
(x - 1)(x + 2)(x + 3)(x + 6) = (x -1)(x + 6) (x + 2)(x+3) = (x2 + 5x - 6) (x2 + 5x + 6)
đặt x2 + 5x = t
thay vào được: (t - 6) (t+ 6) = t2 - 36
có: (x - 1)(x + 2)(x + 3)(x + 6) = t2 - 36 = (x2 + 5x)2 - 36
Vậy giá trị nhỏ nhất của biểu thức là -36
P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
(x-1)(x+2)(x+3)(x+6)
=[(x-1)(x+6)][(x+2)(x+3)]
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2-36>=-36
=>min=-36<=>x=0 hoặc x=-5
=(x2+5x+6)(x2+5x−6)
=(x2+5x)2−36≥−36
→min=−36
↔[x=0x=−5