Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B = \(3x^2+x+5\)
\(=2x^2+x^2+x+\frac{1}{4}+\frac{19}{4}\)
\(=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Vì \(2x^2\ge0\forall x\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(B=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge0+0+\frac{19}{4}=\frac{19}{4}\)
Vậy \(B_{min}=\frac{19}{4}\) hơ icos vấn đề
\(A=-x^2-4x-2\)
\(\Leftrightarrow-A=x^2+4x+2\)
\(\Leftrightarrow-A=x^2+4x+4-2\)
\(\Leftrightarrow-A=\left(x+2\right)^2-2\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)
\(\Rightarrow A\le2\)
Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
A = x2+ 3x+ 7
=x2 + 2*x*3/2+9/4 + 19/4
=(x+3/2)2 +19/4
ta có (x+3/2)2>0 nên (x+3/2)2+ 19/4>hoặc=19/4
=> AMin khi x+3/2=0
=>x=-3/2
A = x2 - 3x + 5 ( x2 chứ nhể )
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Dấu "=" xảy ra <=> x = 3/2
=> MinA = 11/4 <=> x = 3/2
B = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = 0
=> MinB = 5 <=> x = 0
a)Đặt \(A=x^2-x=x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy \(A_{min}=\frac{-1}{4}\Leftrightarrow x=\frac{1}{2}\)
Câu b nữa bạn nhé!