K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2015

Ta có: \(\frac{3x+4}{x+1}=\frac{3\left(x+1\right)+1}{x+1}=\frac{3\left(x+1\right)}{x+1}+\frac{1}{x+1}=3+\frac{1}{x+1}\left(x\ne-1\right)\).

    - Để  \(3+\frac{1}{x+1}\) đạt giá trị lớn nhất thì  \(\frac{1}{x+1}\) đạt giá trị dương lớn nhất

-> x+1 đạt giá trị dương nhỏ nhất  (x+1 khác 0)

-> x đạt giá trị dương nhỏ nhất

-> x=0

    

- Để  \(3+\frac{1}{x+1}\) đạt giá trị  nhỏ nhất thì  \(\frac{1}{x+1}\) đạt giá trị âm nhỏ nhất

-> x+1 đạt giá trị âm lớn nhất

-> x đạt giá trị âm lớn nhất

-> x= 0 

11 tháng 10 2015

ta có: |x|+10 > 10 với mọi x

=> \(\frac{-10}{\left|x\right|+10}\le-\frac{10}{10}=-1\)

=> \(\frac{-10}{\left|x\right|+10}\) có GTLN là -1 <=> |x| +10=10 <=>x=0

Vậy GTLN của ps là -1 tại x=0

ko có GTNN đâu bn,nên ta tìm GTLN thôi

17 tháng 7 2019

Ta có: x4 \(\ge\)\(\forall\)x

=> x4 + 5 \(\ge\)\(\forall\)x

=> (x4 + 5)2 \(\ge\)25 \(\forall\)x

Dấu "=" xảy ra <=> x = 0

Vậy Min của A = 25 tại x = 0

17 tháng 7 2019

\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)

Vì \(x^4\ge0\)và \(x^4+10>0\)

\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

\(KL:B_{min}=25\Leftrightarrow x=0\)

29 tháng 11 2015

GTNN của

+,G=3/2

+,H=-2015

+,K=5

17 tháng 7 2018

\(A=5-\left|\frac{2}{3}-x\right|\)

Ta có: \(\left|\frac{2}{3}-x\right|\ge0\forall x\)

\(\Rightarrow5-\left|\frac{2}{3}-x\right|\le5\forall x\)

\(A=5\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(A=5\Leftrightarrow x=\frac{2}{3}\)

17 tháng 7 2018

chữ A ngược có ngĩa là gì vậy

21 tháng 6 2018

Vì \(\hept{\begin{cases}|x-3|\\|4+x|\end{cases}\ge0}\) nên minH = 0