K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)

\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(x=-\dfrac{1}{3}\)

Vậy với \(x=-\dfrac{1}{3}\) thì \(D_{Min}=\dfrac{1}{4}\)

5 tháng 5 2017

Ta có : | x + 1/2 | > hoặc = 0

| x + 1/3 | > hoặc = 0

| x + 1/4 | > hoặc = 0

=> D = | x + 1/2 | + | x + 1/3 | + | x + 1/4 | > hoặc = 0

Dấu " = " xảy ra khi D = 0

Vậy GTNN của biểu thức D là 0

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

25 tháng 3 2017

Sao câu hỏi của bn giống của mình vậy ???

26 tháng 3 2017

mk cg k biết bn cg hỏi câu này ak

5 tháng 7 2018

\(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .

vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1

vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1

b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>

\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3

22 tháng 10 2018
https://i.imgur.com/V0RPqo5.gif
18 tháng 4 2017

\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)

\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)

\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)

\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)

\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)

Vậy \(P=\dfrac{37}{60}\)

\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)

\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)

\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)

\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)

Vậy \(Q=\dfrac{29}{125}\)

18 tháng 4 2017

a)

b) 4,5 : 0,3 = 2,25 : ( 0,1.x) => 0,1.x =

c)

d)


16 tháng 7 2017

Bạn hãy chỉ giúp mình cách viết phân số và hỗn số trên máy tính. Mình cảm ơn bạn nhiều lắm!hihivuihihi^ - ^

11 tháng 6 2018

\(=x^2+2x-3x-6+x^2-1-x^2+\frac{1}{2}x+\frac{1}{2}x-\frac{1}{4}-x^2\)

\(=\left(x^2+x^2-x^2-x^2\right)+\left(2x-3x+\frac{1}{2}x+\frac{1}{2}x\right)+\left(-6-1-\frac{1}{4}\right)\)

\(=\frac{-29}{4}\)

Vậy...

9 tháng 11 2018

\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)

\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)

\(\Leftrightarrow\dfrac{1}{3}x+4=0\)

\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)

\(\Leftrightarrow x=-4:\dfrac{1}{3}\)

\(\Leftrightarrow x=-12\)

Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)

\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)

Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)

\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)

Dấu "=" xảy ra khi

\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)

Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)

9 tháng 11 2018

b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)

\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)

Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)

vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)