Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(2A=4x^2+18y^2-12xy-12x-24y+4036\)
\(2A=\left(4x^2-12xy+9y^2\right)-12x-24y+9y^2+4036\)
\(2A=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+\left(9y^2-42y+49\right)+3975\)
\(2A=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3975\ge3975\)
\(\Rightarrow A\ge\frac{3975}{2}\) Dấu "=" xảy ra tại \(y=\frac{7}{3};x=5\)
Em sai từ dòng thứ 3 xuống dòng thứ 4
4036 = 9+49 + 3975 ???
Điều đó dẫn đến kết quả của em sai. Kiểm tra lại nhé Khải!
A=\(x^2+\left(3y\right)^2+4-6xy+12y-4x+x^2+4x+4+1996\)
A=\(\left(x-3y-2\right)^2+\left(x+2\right)^2+1996\ge1996\)
Vay gtnn cua A la 1996.Dat duoc khi va chi khi \(\hept{\begin{cases}x+2=0\\x-3y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\3y=-2-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}}\)
Study well
A=3x2 + 9y2 - 6xy - 16x - 12y + 2049
3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147
=(3x-3y-8)2+18y2-84y+6083
=(3x-3y-8)2+2.(3y-7)2+5985>5985
Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995
Amin=1995<=>y=7/3 và x=5
mk chỉ tìm được GTNN thôi
\(A=4x^2-6x\left(x-y\right)+3y^2-12y+20\)
\(A=\left(2x\right)^2-2.2x.\frac{3}{2}y+\left(\frac{3}{2}y\right)^2-\frac{9}{4}y^2+3y^2-12y+20\)
\(A=\left(2x-\frac{3}{4}y\right)^2+\frac{3}{4}y^2-12y+432-432+20\)
\(A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{4}y^2-2.\frac{1}{2}.12+12^2\right)-432+20\)
\(\Rightarrow A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\)
Ta có:\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2\ge0\\\left(\frac{1}{2}y-12\right)^2\ge0\Rightarrow3\left(\frac{1}{2}y-12\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\ge-412\)
\(\Rightarrow A_{min}=-412\)đạt được khi
i\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2=0\\\left(\frac{1}{2}y-12\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-\frac{3}{4}y=0\\\frac{1}{2}y-12=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=\frac{3}{4}y\\\frac{1}{2}y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=24\end{cases}}}\)
#)Giải :
Đặt \(A=2x^2+9y^2-6xy-6x-12y+1974\)
\(\Rightarrow A=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(\Rightarrow A=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(\Rightarrow A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dâu ''='' xảy ra khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy GTNN của A = 1945 tại x = 5 và y = 7/3
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(A=\left(9y^2-6xy+12y\right)+4x^2-16x+2012\)
\(=\left[\left(3y\right)^2-2.3y\left(x-2\right)+\left(x-2\right)^2\right]-\left(x-2\right)^2+4x^2-16x+2012\)
\(=\left(3y-x+2\right)^2+3x^2-12x+2008\)
\(=\left(3y-x+2\right)^2+3\left(x^2-2.x.2+4\right)-3.4+2008\)
\(=\left(3y-x+2\right)^2+3\left(x-2\right)^2+1996\ge1996\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3y-x+2=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=2\end{cases}}\)