Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
1.
A=\(4x^2-4x+5\)
A=\(\left(2x\right)^2-4x+1+4\)
A=\(\left(2x-1\right)^2+4\)
vì \(\left(2x-1\right)^2\)≥0 với mọi x
⇒\(\left(2x-1\right)^2+4\)≥4 với mọi x
Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0
⇔2x-1=0
⇔x=\(\dfrac{1}{2}\)
Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)
B=\(3x^2+6x-1\)
B=3(\(\left(x^2+2x\right)\)-1
B=\(3.\left(x^2+2x-1+1\right)-1\)
B=\(3.\left(x+1\right)^2-3-1\)
B=\(3\left(x-1\right)^2-4\)
vì \(3.\left(x-1\right)^2\)≥0 với mọi x
⇒\(3\left(x-1\right)^2-4\)≥-4 với mọi x
dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)
⇔x-1=0
⇔x=1
vậy GTNN của B=-4 khi x=1
\(A=x^4-3x^3+4x^2-3x+10=\left(x^4-3x^3+4x^2-3x+1\right)+9=\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)(do \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\x^2-x+1>0\forall x\end{cases}}\))
Đẳng thức xảy ra khi x = 1
x^4- 2x^ba-4x >hoặc = 0
x^4-2x^ba-4x+5>hoặc bằng 5
dấu = xảy ra khi x^4-2x^ba-4x=0 suy ra x=0
vậy giá trị nhỏ nhất của bt trên là 5 tại x=0