K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

`A=2x^2-2xy-6x+y^2+10`

`A=x^2-2xy+y^2+x^2-6x+10`

`A=(x-y)^2+x^2-6x+9+1`

`A=(x-y)^2+(x-3)^2+1`

Vì `(x-y)^2+(x-3)^2>=0=>A>=1`

Dấu "=" xảy ra khi `{(x-y=0),(x-3=0):}<=>x=y=3`

2 tháng 10 2018

a) \(A=x^2+6x+10\)

\(A=x^2+2\cdot x\cdot3+3^2+1\)

\(A=\left(x+3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(B=2x^2+y^2+2xy+4x+15\)

\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)

\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

5 tháng 7 2017

Bài 2: sửa đề: Tìm GTNN

a, \(A=x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\)

Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

Vậy \(MIN_A=1\) khi x = 3

b, \(B=x^2+y^2-2x+4y+5\)

\(=x^2-2x+1+y^2+4y+4\)

\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(MIN_B=0\) khi x = 1 và y = -2

5 tháng 7 2017

ý b sai đề hả

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

5 tháng 10 2019

\(A=2x^2+y^2+2xy+60+8x+8y\)

    \(=\left(x^2+y^2+2xy\right)+8x+8y+16+y^2+44\)

    \(=\left(x+y\right)^2+2\left(x+y\right).4+16+y^2+44\)

    \(=\left(x+y+4\right)^2+y^2+44\)

Vì \(\hept{\begin{cases}\left(x+y+4\right)^2\ge0\forall x\\y^2\ge0\forall y\end{cases}}\)

\(\Rightarrow A\ge44\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+4=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

Vậy \(minA=44\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

6 tháng 10 2019

bạn cũng dc đó

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

17 tháng 8 2015

= x^2 - 2xy + y^2 + 2x - 2y + x^2 -  2x + 12 

= ( x-  y)^2  + 2 ( x - y)  + x^2 - 2x + 1 + 11 

= ( x-  y)^2 + 2 ( x-  y ) + 1 + (x - 1 )^2 + 10 

= ( x - y + 1 )^2 + ( x- 1 )^2 + 10 

Vậy GTNN là 10 khi x - 1 = 0 và x - y + 1 =  0 

=> x = 1 và 2 - y  = 0 

=>x = 1 và y = 2 

 

30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....