K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)

\(A=\left(x^2+5x+5\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x^2+5x+5=0\)

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

\(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)

\(B=\left[x\left(x+1\right)\right]\left[\left(x-3\right)\left(x+4\right)\right]\)

\(B=\left(x^2+x\right)\left(x^2+x-12\right)\)

Đặt \(x^2+x=a\)ta được;

\(B=a\left(a-12\right)=a^2-12a=\left(a^2-2.a.6+36\right)-36\)\(=\left(a-6\right)^2-36\)

Vì \(\left(a-6\right)^2\ge0\)\(\Rightarrow\left(a-6\right)^2-36\ge-36\)

Dấu ''='' xảy ra khi \(a-6=0\Rightarrow a=6\Rightarrow x^2+x-6=0\)\(\Rightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)

\(\Rightarrow x\left(x+3\right)-2\left(x+3\right)=0\)\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy GTNN của B là B=-36 khi x=-3 hoặc x=2

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2