K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

1) a) \(A=x-\left|x\right|\)

Xét \(x\ge0\)thì A = x - x = 0                                (1)

Xét x < 0 thì A = x - ( - x) = 2x < 0                         (2)

Từ (1) và (2) ta thấy \(A\le0\)

Vậy GTLN của A bằng 0 khi và chỉ khi x \(\ge\)0

b) B = \(\left|x-3\right|-\left|5-x\right|\ge\left|x-3-5-x\right|\ge\left|8\right|=8\)

Dấu " = " xảy ra khi và chỉ khi \(\left(x-3\right)\left(5-x\right)>0\)

TH1: \(\orbr{\begin{cases}x-3>0\\5-x>0\end{cases}}\Rightarrow\orbr{\begin{cases}x>3\\x< 5\end{cases}\Rightarrow}3< x< 5\)(t/m)

TH2 : \(\orbr{\begin{cases}x-3< 0\\5-x< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< 3\\x>5\end{cases}}\)(vô lý)

Vậy GTNN của B là 8 khi và chỉ khi 3 < x < 5

c) \(C=\frac{6}{\left|x\right|-3}\)

Xét \(\left|x\right|>3\)thì C > 0

Xét \(\left|x\right|< 3\)thì do \(x\inℤ\)nên \(\left|x\right|\)= 0 hoặc 1 hoặc 2 ,khi đó C bằng -2,hoặc -3 hoặc -6

Vậy GTNN của C bằng -6 khi và chỉ khi x = \(\pm2\)

d) \(D=\frac{x+2}{\left|x\right|}\)

Xét các trường hợp :

Xét \(x\le-2\)thì \(C\le1\)

Xét \(x=-1\)thì \(C=1\)

Xét \(x\ge1\). Khi đó \(D=\frac{x+2}{x}=1+\frac{2}{x}\). Ta thấy D lớn nhất <=> \(\frac{2}{x}\)lớn nhất.Chú ý rằng x là số nguyên dương nên \(\frac{2}{x}\)lớn nhất <=> x nhỏ nhất,tức là x = 1,khi đó D = 3

So sánh các trường hợp trên ta suy ra : GTLN của C bằng 3 khi và chỉ khi x = 1

Còn bài 2 tự làmm

31 tháng 8 2015

a) Vì |1/3 - x| \(\ge\) 0 => 5 + |1/3 - x| \(\ge\) 5 

Để dấu "=" xảy ra thì |1/3 - x| = 0 hay 1/3 - x = 0 => x = 1/3 

Vậy min A = 5 khi x = 1/3

b) Vì |x - 2/3| \(\ge\) 0 => 2|x - 2/3| - 1 \(\ge\) -1 

Để dấu "=" xảy ra thì x - 2/3 = 0 => x = 2/3 

=> min B = -1 khi x = 2/3 

16 tháng 9 2015

Vì |2,5-x|\(\ge\)0

=> 3,7+|2,5-x| \(\ge\)0+3,7

=> P\(\ge\)3,7

Dấu "=" xảy ra khi |2,5-x| = 0

=> 2,5-x = 0

x = 2,5

Vậy Pmin = 3,7 tại x = 2,5