K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

giá trị nhỏ nhất là 3

20 tháng 12 2018

\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)

\(\left|x-2011\right|\ge0\)

=> \(B\ge2\)

dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)

(x-y)2+lx-1l+2011>(=)0+0+2011=2011

dấu bằng xảy ra khi (x-y)2=0;lx-1l=0

lx-1l=0=>x=1

=>(1-x)2=0

=>y=1

vậy MinM=2011 khi x=y=1

23 tháng 8 2015

Ta có:

(x-y)2\(\ge\)0

|x-1|\(\ge\)0

2011>0

Suy ra GTNN của M=2011 tại x=1, y=1

 

 

24 tháng 10 2017

k tớ trc ik tớ lm cho *hỳ hỳ*

14 tháng 1 2018

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)

Vậy MinC = 2500 khi 50 =< x =< 56

14 tháng 1 2018

a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1

Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)

Vậy MinA = 1 khi 2011 =< x =< 2012

b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011| 

Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)

Mà \(\left|x-2011\right|\ge0\forall x\)

\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)

Vậy MinB = 2 khi x = 2011

Câu c để nghĩ 

20 tháng 12 2018

GTNN của biểu thức là 1945

20 tháng 12 2018

Trình bày ra bạn j đó ơi =-='

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2021+|x-2023|=|x-2021|+|2023-x|\geq |x-2021+2023-x|=2$

$|x-2022|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2021+|x-2022|+|x-2023|\geq 2+0=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt được khi:

$(x-2021)(2023-x)\geq 0$ và $x-2022=0$

$\Leftrightarrow x=2022$

18 tháng 2 2020

minA=-4

minB = 10

minC = 3