K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Xin lỗi cậu nhưng cái này mình chưa học đến , không biết phải giải thế nào

28 tháng 12 2016

lớp 6 thằng ngu

11 tháng 8 2017

nếu x>0 thì GTTĐ của x=x

nếu x<0 thì GTTĐcủa x=x

2 tháng 1 2018

a, \(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)

Vậy GTNN của A = 1 khi \(1\le x\le2\)

b, \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left(\left|x-1\right|+\left|x-3\right|\right)+\left|x-2\right|\)

Ta có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

Mà \(\left|x-2\right|\ge0\)

\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|\ge0\end{cases}\Rightarrow x=2}\)

Vậy GTNN của B = 2 khi x = 2

c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\)

\(\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|\)

\(\ge2+2=4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Rightarrow}2\le x\le}3\)

Vậy GTNN của C = 4 khi \(2\le x\le3\)

2 tháng 1 2018

bài lớp mấy đây ?

6 tháng 8 2017
 
 
 
 

Áp dụng bất đẳng thức |m|+|n||m+n| .Dấu = xảy ra khi m,n cùng dấu

A|xa+xb|+|xc+xd|=|2xab|+|c+d2x|

|2xab2x+c+d|=|c+dab|

Dấu = xảy ra khi xa và xb cùng dấu hay(xa hoặc xb)

                        xc và xd cùng dấu hay(xc hoặc xd)

                        2xab và c+d2x cùng dấu hay (x+b2xc+d)

Vậy Min A =c+d-a-b khi bxc