K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I don't now

mik ko biết 

sorry 

......................

25 tháng 7 2018

Tìm GTNN của A = \(\frac{3x^2-8x+6}{x^2-2x+1}\)

\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)

\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

Dấu ''='' xảy ra khi GTNN của A=2

8 tháng 9 2019

A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

dấu = xảy ra x=2

chúc ban hk tốt

16 tháng 1 2017

Ta có:

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)

\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)

Đê pt theo nghiệm x có nghiệm thì

\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)

\(\Leftrightarrow A-2\ge0\)

\(\Leftrightarrow A\ge2\)

Vậy GTNN là 2 khi x = 2

29 tháng 7 2017

x=2

lời giải mk đang làm

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

28 tháng 2 2020

\(ĐKXĐ:x\ne1\)

Ta có :

 \(x^2-2x+1=\left(x-1\right)^2>0\)(TH = 0 bị loại)

\(\Rightarrow\)Để \(A_{min}\Leftrightarrow3x^2-8x+6\)min

Có :\(3x^2-8x+6=\left(\sqrt{3}x+\frac{4\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Dấu " = " xảy ra :

\(\Leftrightarrow\sqrt{3}x+\frac{4\sqrt{3}}{3}=0\)

\(\Leftrightarrow x=-\frac{4}{3}\)(tm)

Vậy \(A_{min}=\frac{\frac{2}{3}}{\left(-\frac{4}{3}-1\right)^2}=\frac{6}{49}\Leftrightarrow x=-\frac{4}{3}\)

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

15 tháng 10 2017

Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1

16 tháng 10 2017

khi x=2 chứ