K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

em ko bít vì em mới lớp 5

16 tháng 1 2017

45,23,134

19 tháng 7 2017

a, GTLN của A=2

25 tháng 5 2017

      \(P=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=2+\frac{5}{x-1}\)

    P nguyên => \(\frac{5}{x-1}\)nguyên => \(x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Thay x - 1 lần lượt bằng các giá trị trên rồi tính ra x.

20 tháng 3 2018

\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN 

\(\Rightarrow\)\(6-x=1\)

\(\Rightarrow\)\(x=5\)

Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)

Vậy \(A_{max}=2\) khi \(x=5\)

Chúc bạn học tốt ~ 

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)