Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+2x-x-1\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)
\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\)
Vì \(\left(2x-y\right)^2\ge0\) với mọi x và y
\(y^2\ge0\) với mọi y
\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)
\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(C=5x-3x^2+2\)
\(C=-\left(3x^2-5x-2\right)\)
\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)
\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Vì \(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)
\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(D=-8x^2+4xy-y^2+3\)
\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)
\(D=-\left(2x-y\right)^2-4x^2+3\)
Vì \(-\left(2x-y\right)^2\le0\) với mọi x và y
\(-4x^2\le0\) với mọi x
\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y
\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(E=x^2-8x+38\)
\(E=x^2-2.x.4+16+22\)
\(E=\left(x-4\right)^2+22\)
Vì \(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x
\(\Rightarrow Emin=22\Leftrightarrow x=4\)
\(F=6x-x^2+1\)
\(F=-\left(x^2-6x-1\right)\)
\(F=-\left(x^2-2.x.3+9-9-1\right)\)
\(F=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-3\right)^2+10\le10\)
\(\Rightarrow Fmax=10\Leftrightarrow x=3\)
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
\(B=7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
\(E=x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(F=x^2-9x+18\)
\(=x^2-3x-6x+18\)
\(=x\left(x-3\right)-6\left(x-3\right)\)
\(=\left(x-3\right)\left(x-6\right)\)
\(H=8x^2-2x-1\)
\(=8x^2-4x+2x-1\)
\(=4x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(4x+1\right)\)
\(A=-3x^2+6x-4\)
\(A=-\left(3x^2-6x+4\right)\)
\(A=-3\left(x^2-2x+4\right)\)
\(A=-3\left(x^2-2x+1+3\right)\)
\(A=-3\left(x-1\right)^2-9\)
Vì \(-3\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-1\right)^2-9\le-9\)
\(\Rightarrow Amin=-9\Leftrightarrow x=1\)
\(B=-x^2-4x-y^2+2y\)
\(B=-x^2-4x-2-y^2+2y-1+3\)
\(B=-\left(x^2+4x+2\right)-\left(y^2-2y+1\right)+3\)
\(B=-\left(x+2\right)^2-\left(y-1\right)^2+3\)
Vì \(-\left(x+2\right)^2\le0\) với mọi x
\(-\left(y-1\right)^2\le0\) với mọi y
\(\Rightarrow-\left(x+2\right)^2-\left(y-1\right)^2+3\le3\) với mọi x,y
\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Sửa đề \(C=-x^2-8x-y^2+2y\)
\(C=-x^2-8x-16-y^2+2y-1+17\)
\(C=-\left(x^2+8x+16\right)-\left(y^2-2y+1\right)+17\)
\(C=-\left(x+4\right)^2-\left(y-1\right)^2+17\)
Vì \(-\left(x+4\right)^2-\left(y-1\right)^2\le0\) với mọi x,y
\(\Rightarrow-\left(x+4\right)^2-\left(y-1\right)^2+17\le17\)
\(\Rightarrow Cmin=17\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
\(D=\left(x^2+2\right)^2-2\left(x^2-2\right)\left(x^2+2\right)-10\)
\(D=\left(x^2+2\right)^2-2\left(x^2-2\right)\left(x^2+2\right)+\left(x^2-2\right)^2-\left(x^2-2\right)^2-10\)
\(D=\left(x^2+2-x^2-2\right)^2-\left(x^2-2\right)^2-10\)
\(D=-\left(x^2-2\right)^2-10\)
Vì \(-\left(x^2-2\right)^2\le0\)
\(\Rightarrow-\left(x^2-2\right)^2-10\le-10\)
\(\Rightarrow Dmin=-10\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)