K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

\(P=\frac{x^2+1}{x^2-x+1}\)

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi \(x\)

\(P=\frac{3x^2+3}{3\left(x^2-x+1\right)}=\frac{2\left(x^2-x+1\right)+x^2+2x+1}{3\left(x^2-x+1\right)}\)

         \(=\frac{2}{3}+\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge\frac{2}{3}\)

Giá trị nhỏ nhất của P là \(\frac{2}{3}\)khi \(x+1=0\Rightarrow x=-1\)

\(P=\frac{2x^2-2x+2-x^2+2x-1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x-1\right)^2}{x^2-x+1}\)

     \(=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\)

Giá trị lớn nhất của P là 2 khi \(x-1=0\Rightarrow x=1\)

27 tháng 3 2019

 (ß) mình nghĩ đây là toán 9 thì nên dùng delta chứ?

\(Px^2-Px+P=x^2+1\)

\(\Leftrightarrow\left(P-1\right)x^2-Px+\left(P-1\right)=0\)

\(\Delta=P^2-4\left(P-1\right)^2\ge0\)

\(\Leftrightarrow-3P^2+8P-4\ge0\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy...

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

20 tháng 12 2016

\(A=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1+x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)

xét \(b=\frac{x}{x^2-x+1}\Leftrightarrow bx^2-bx+b=x\)

\(\Leftrightarrow bx^2-\left(b+1\right)x+b=0\left(1\right)\)

Bài toán trở thành tìm b để (1) có nghiệm

Nếu \(b=0\Leftrightarrow-x=0\Rightarrow x=0\)

Nếu \(b\ne0\)cần \(\Delta_x\ge0\Rightarrow\left(b+1\right)^2-4.b^2\ge0\)

\(\Leftrightarrow-3b^2+2b+1\ge0\)\(\Delta_b=1-\left(-3\right).1=4\)

\(\Rightarrow\frac{-1}{3}\le b\le1\)

\(\Rightarrow\frac{2}{3}\le A\le2\)

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

17 tháng 4 2019

\(\Leftrightarrow yx^2+y=x^2\)

\(\Leftrightarrow x^2\left(y-1\right)+y=0\)

*Xét y = 1 thì....

*Xét y khác 1

Có \(\Delta'=0-y\left(y-1\right)\)

          \(=-y^2+y\)

Pt có nghhieemj \(\Leftrightarrow\Delta'\ge0\)

                          \(\Leftrightarrow0\le y\le1\)

Làm nốt nha

6 tháng 11 2015

\(y=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{1}{x+\frac{1}{x}-1}\)

Nếu x =0 => y =1

Nếu x> 0  => \(x+\frac{1}{x}\ge2\Rightarrow y\le1+\frac{1}{2-1}=2\)

    y lớn nhất = 2 khi x =1

Nếu x< 0 => \(-x+\frac{1}{-x}\ge2\Rightarrow x+\frac{1}{x}\le-2\Rightarrow y\ge1+\frac{1}{-2-1}=\frac{2}{3}\)

  => y nhỏ nhất = 2/3 khi x=-1

( Bạn có thể giải = cách đưa về PT bậc 2 nhé)

6 tháng 11 2015

tớ khuyên cậu khoảng 9h đăng là có nhiều người giải đấy